Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-67gxp Total loading time: 0.312 Render date: 2021-02-27T08:04:02.536Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

SOLVABLE LIE GROUPS DEFINABLE IN O-MINIMAL THEORIES

Published online by Cambridge University Press:  28 April 2016

Annalisa Conversano
Affiliation:
Massey University Albany, INMS, IIMS Building, Private Bag 102904, North Shore City 0745, New Zealand (a.conversano@massey.ac.nz)
Alf Onshuus
Affiliation:
Departamento de Matemáticas, Universidad de los Andes, Cra 1 No. 18A-10, Edificio H, Bogotá 111711, Colombia (aonshuus@uniandes.edu.co)
Sergei Starchenko
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA (starchenko.1@nd.edu)

Abstract

In this paper, we completely characterize solvable real Lie groups definable in o-minimal expansions of the real field.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Baro, E., Jaligot, E. and Otero, M., Commutators in groups definable in o-minimal structures, Proc. Amer. Math. Soc. 140(10) (2012), 36293643. MR 2929031.CrossRefGoogle Scholar
Borel, A., Linear Algebraic Groups, Second, Graduate Texts in Mathematics, 126 (Springer, New York, 1991). MR 1102012 (92d:20001).CrossRefGoogle Scholar
Conversano, A. and Pillay, A., Connected components of definable groups and o-minimality I, Adv. Math. 231(2) (2012), 605623. MR 2955185.CrossRefGoogle Scholar
Dixmier, J., L’application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. France 85 (1957), 113121. MR 0092930 (19,1182a).CrossRefGoogle Scholar
Edmundo, M. J., Solvable groups definable in o-minimal structures, J. Pure Appl. Algebra 185(1–3) (2003), 103145. MR 2006422 (2004j:03048).CrossRefGoogle Scholar
Gorbatsevich, V. V., Onishchik, A. L. and Vinberg, È. B., Structure of Lie groups and Lie algebras, a translation of ıt current problems in mathematics. Fundamental directions, in Lie Groups and Lie Algebras, III (ed. Vinberg, È. B.), Encyclopaedia of Mathematical Sciences, Volume 41, p. iv+248 (Springer-Verlag, Berlin, 1994).CrossRefGoogle Scholar
Iwasawa, K., On some types of topological groups, Ann. of Math. 50(3) (1949), 507558.CrossRefGoogle Scholar
Knapp, A. W., Lie Groups Beyond an Introduction, Second, Progress in Mathematics, 140 (Birkhäuser Boston, Inc., Boston, MA, 2002). MR 1920389 (2003c:22001).Google Scholar
Miller, C. and Starchenko, S., A growth dichotomy for o-minimal expansions of ordered groups, Trans. Amer. Math. Soc. 350(9) (1998), 35053521. MR 1491870 (99e:03025).CrossRefGoogle Scholar
Onishchik, A. L. and Vinberg, È. B., Foundations of Lie Theory, Lie Groups and Lie Algebras, I, pp. 194. (1993).Google Scholar
Peterzil, Y., Pillay, A. and Starchenko, S., Definably simple groups in o-minimal structures, Trans. Amer. Math. Soc. 352(10) (2000), 43974419. MR 1707202 (2001b:03036).CrossRefGoogle Scholar
Peterzil, Y., Pillay, A. and Starchenko, S., Linear groups definable in o-minimal structures, J. Algebra 247(1) (2002), 123. MR 1873380 (2002i:03043).CrossRefGoogle Scholar
Peterzil, Y. and Starchenko, S., On torsion-free groups in o-minimal structures, Illinois J. Math. 49(4) (2005), 12991321. (electronic). MR 2210364 (2007b:03058).Google Scholar
Peterzil, Y. and Steinhorn, C., Definable compactness and definable subgroups of o-minimal groups, J. Lond. Math. Soc. (2) 59(3) (1999), 769786. MR 1709079 (2000i:03055).CrossRefGoogle Scholar
Pillay, A., On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra 53(3) (1988), 239255. MR 961362 (89i:03069).CrossRefGoogle Scholar
Strzebonski, A. W., One-dimensional groups definable in o-minimal structures, J. Pure Appl. Algebra 96(2) (1994), 203214. MR 1303546 (95j:03068).CrossRefGoogle Scholar
van den Dries, L., Tame Topology and o-minimal Structures, London Mathematical Society Lecture Note Series, 248 (Cambridge University Press, Cambridge, 1998). MR 1633348 (99j:03001).CrossRefGoogle Scholar
van den Dries, L., Macintyre, A. and Marker, D., The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140(1) (1994), 183205. MR 1289495 (95k:12015).CrossRefGoogle Scholar
van den Dries, L. and Miller, C., Geometric categories and o-minimal structures, Duke Math. J. 84(2) (1996), 497540.CrossRefGoogle Scholar
Wilkie, A. J., Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9(4) (1996), 10511094. MR 1398816 (98j:03052).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 40 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

SOLVABLE LIE GROUPS DEFINABLE IN O-MINIMAL THEORIES
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

SOLVABLE LIE GROUPS DEFINABLE IN O-MINIMAL THEORIES
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

SOLVABLE LIE GROUPS DEFINABLE IN O-MINIMAL THEORIES
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *