Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9pqtr Total loading time: 24.571 Render date: 2021-04-14T10:41:37.177Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Comparison isomorphisms for smooth formal schemes

Published online by Cambridge University Press:  16 May 2012

Fabrizio Andreatta
Affiliation:
Dipartimento di Matematica ‘Federigo Enriques’, Università Statale di Milano, Via C. Saldini 50, Milano 20133, Italia
Adrian Iovita
Affiliation:
Dipartimento di Matematica Pura ed Applicata, Università Degli, Studi di Padova, Via Trieste 63, Padova 35121, Italia Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd., Montreal, H3G 1MB, Canada

Abstract

Image of the first page of this article. For PDF version, please use the ‘Save PDF’ preceeding this image.
Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Andreatta, F. and Brinon, O. , Acyclicité géométrique de , Comment. Math. Helv., in press (available at http://www.math.univ-paris13.fr/~brinon).Google Scholar
2.Andreatta, F. and Iovita, A. , Global applications of relative -modules, Représentations p-adiques de groupes p-adiques I: Représentations galoisiennes et (φ,Γ)-modules, Astérisque 319 (2008), 339420.Google Scholar
3.Andreatta, F. and Iovita, A. , Erratum to the article Global applications to relative -modules, I, Représentations p-adiques de groupes p-adiques II: Représentations de GL2(ℚp) et (φ,Γ)-modules, Astérisque 330 (2010), 543554.Google Scholar
4.Andreatta, F., Iovita, A. and Stevens, G. , Overconvergent Eichler–Shimura isomorphisms, in preparation.Google Scholar
5.Artin, M. , Grothendieck topologies, Notes on a seminar at Harvard University, Spring 1962.Google Scholar
6.Berthelot, P. and Ogus, A. , Notes on crystalline cohomology (Princeton University Press, 1978).Google Scholar
7.Berthelot, P. , Cohomologie cristalline des schémas de caractéristique p > 0, LNM, Volume 407 (Springer, Berlin, Heidelberg, New York, 1974).Google Scholar
8.Berthelot, P. , Géométrie rigide et cohomologie des variétés algébriques de caractéristique , Introductions aux cohomologies p-adiques (Luminy, 1984), Mém. Soc. Math. Fr. 23 (1986), 732.Google Scholar
9.Berthelot, P. , Cohomologie rigide et cohomologie rigide à supports propres. Première partie, preprint IRMAR 96-03, 89 pp (available at http://perso.univ-rennes1.fr/pierre.berthelot; 1996).Google Scholar
10.Bloch, S. and Kato, K. , -adic étale cohomology, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 107152.CrossRefGoogle Scholar
11.Brinon, O. , Représentations -adiques cristallines et de de Rham dans le cas relatif, Mém. Soc. Math. Fr. 112 (2008), 159.Google Scholar
12.Brinon, O. , Représentations cristallines dans le cas d’un corps résiduel imparfait, Ann. Inst. Fourier 56 (2006), 919999.CrossRefGoogle Scholar
13.Candilera, M. and Cristante, V. , Periods and duality of -adic Barsotti–Tate groups, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 22 (1995), 545593.Google Scholar
14.Colmez, P. , Périodes -adiques des variétés abélinnes, Math. Ann. 292 (1992), 629644.CrossRefGoogle Scholar
15.Colmez, P. and Fontaine, J.-M. , Construction des représentations -adiques semi-stables, Invent. Math. 140 (2000), 143.CrossRefGoogle Scholar
16.de Jong, J. and van der Put, M. , Étale cohomology of rigid analytic spaces, Doc. Math. 1 (1996), 156.Google Scholar
17.Faltings, G. , -adic Hodge theory, J. AMS 1 (1988), 255299.Google Scholar
18.Faltings, G. , Crystalline cohomology and -adic Galois representations, in Algebraic analysis, geometry and number theory (ed. Igusa, J. I. ), pp. 2580 (John Hopkins University Press, Baltimore, 1998).Google Scholar
19.Faltings, G. , Almost étale extensions, (ed. Berthelot, P., Fontaine, J.-M., Illusie, L., Kato, K. and Rapoport, M. ), Cohomologies p-adiques et applications arithmétiques, vol. II Astérisque 279 (2002), 185270.Google Scholar
20.Fontaine, J.-M. , Sur certains types de représentations -adiques du group de Galois d’un corps local; construction d’un anneau de Barsotti–Tate, Ann. of Math. (2) 115 (1982), 529577.CrossRefGoogle Scholar
21.Fontaine, J.-M. and Messing, W. , -adic periods and -adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math. 67 (1987), 179207.CrossRefGoogle Scholar
22.Fontaine, J.-M. , Le corps des périodes -adiques. With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque 223 (1994), 59111.Google Scholar
23.Grothendieck, A. and Dieudonné, J. , Éléments de Géométrie Algébrique, Publ. Math. Inst. Hautes Études Sci. 24 (1964–1965).Google Scholar
24.Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. LNM 269 (1972).Google Scholar
25.Hyodo, O. and Kato, K. , Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque 223 (1994), 321347.Google Scholar
26.Illusie, L. , Cohomologie de de Rham et cohomologie étale -adique, Astérisque 189–190 (1989).Google Scholar
27.Le Stum, B. , PhD thesis, Rennes.Google Scholar
28.Kato, K. , Semi-stable reduction and -adic étale cohomology, Astérisque 223 (1994), 269295.Google Scholar
29.Niziol, W. , Crystalline conjecture via -theory, Ann. Sci. Éc. Norm. Supér. 31, 659–681.Google Scholar
30.Ogus, A. , -Isocrystals and de Rham cohomology II. Convergent isocrystals, Duke Math. J. 51 (1984), 765850.CrossRefGoogle Scholar
31.Saito, M. , Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), 849995.CrossRefGoogle Scholar
32.Tsuji, T. , -adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), 233411.CrossRefGoogle Scholar
33.Tsuji, T. , Crystalline sheaves and filtered convergent F-isocrystals on log schemes, preprint (2008).Google Scholar
34.Valabrega, P. , A few theorems on completion of excellent rings, Nagoya Math. J. 61 (1976), 127133.CrossRefGoogle Scholar
35.Yamashita, G. , -adic étale cohomology and crystalline cohomology for open varieties with semistable reduction, preprint (2002).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 129 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Comparison isomorphisms for smooth formal schemes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Comparison isomorphisms for smooth formal schemes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Comparison isomorphisms for smooth formal schemes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *