Skip to main content Accessibility help


  • DASHAN FAN (a1) (a2) and FAYOU ZHAO (a3)


In this paper, we focus on the multivariate Hausdorff operator of the form

$$\begin{eqnarray}\mathbf{H}_{\unicode[STIX]{x1D6F7}}(f)(x)=\int _{(0,+\infty )^{n}}{\displaystyle \frac{\unicode[STIX]{x1D6F7}\big(\frac{x_{1}}{t_{1}},\frac{x_{2}}{t_{2}},\ldots ,\frac{x_{n}}{t_{n}}\big)}{t_{1}t_{2}\cdots t_{n}}}f(t_{1},t_{2},\ldots ,t_{n})\,\mathbf{dt},\end{eqnarray}$$
where $\mathbf{dt}=dt_{1}\,dt_{2}\cdots \,dt_{n}$ or $\mathbf{dt}=d_{q}t_{1}\,d_{q}t_{2}\cdots d_{q}t_{n}$ is the discrete measure in $q$ -analysis. The sharp bounds for the multivariate Hausdorff operator on spaces $L^{p}$ with power weights are calculated, where $p\in \mathbb{R}\backslash \{0\}$ .


Corresponding author


Hide All

The research was supported by National Natural Science Foundation of China (Grant Nos. 11471288, 11601456).



Hide All
[1] Anastassiou, G. A., ‘Taylor Widder representation formulae and Ostrowski, Grüss, integral means and Csiszar type inequalities’, Comput. Math. Appl. 54 (2007), 923.
[2] Annaby, M. H. and Mansour, Z. S., q-Fractional Calculus and Equations (Springer, Heidelberg–New York, 2012).
[3] Baiarystanov, A. O., Persson, L. E., Shaimardan, S. and Temirkhanova, A., ‘Some new Hardy-type inequalities in q-analysis’, J. Math. Inequal. 10 (2016), 761781.
[4] Bangerezako, G., ‘Variational calculus on q-nonuniform lattices’, J. Math. Anal. Appl. 306 (2005), 161179.
[5] Chen, J., Fan, D. and Wang, S., ‘Hausdorff operators on Euclidean space’, Appl. Math. J. Chinese Univ. Ser. B 28 (2013), 548564.
[6] Ernst, T., A Comprehensive Treatment of q-Calculus (Birkhäuser/Springer Basel AG, Basel, 2012).
[7] Exton, H., q-hypergeometric Functions and Applications, Ellis Horwood Series: Mathematics and its Applications (Ellis Horwood, Chichester, UK, 1983).
[8] Guo, J. and Zhao, F., ‘Some q-inequalities for Hausdorff operators’, Front. Math. China 12 (2017), 879889.
[9] Jackson, F. H., ‘On q-definite integrals’, Quart. J. Pure Appl. Math. 41 (1910), 193203.
[10] Jackson, F. H., ‘ q-difference equations’, Amer. J. Math. 32 (1910), 305314.
[11] Kac, V. and Cheung, P., Quantum Calculus (Springer-Verlag, New York, 2002).
[12] Liflyand, E., ‘Hausdorff operators on Hardy spaces’, Eurasian Math. J. 4 (2013), 101141.
[13] Maligranda, L., Oinarov, R. and Persson, L. E., ‘On Hardy q-inequalities’, Czechoslovak Math. J. 64 (2014), 659682.
[14] Mitrinović, D. S., Pečarić, J. E. and Fink, A. M., Classical and New Inequalities in Analysis (Kluwer Academic, 1993).
[15] Miao, Y. and Qi, F., ‘Several q-integral inequalities’, J. Math. Inequal. 3 (2009), 115121.
[16] Pachpatte, B. G., ‘On multivariable Hardy type inequalities’, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 38 (1992), 355361.
[17] Sulaiman, W. T., ‘New types of q-integral inequalities’, Adv. Pure Appl. Math. 1 (2011), 7780.
[18] Wu, X. and Chen, J., ‘Best constants for Hausdorff operators on n-dimensional product spaces’, Sci. China Math. 57 (2014), 569578.
[19] Wu, S. and Debnath, L., ‘Inequalities for convex sequences and their applications’, Comput. Math. Appl. 54 (2007), 525534.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


  • DASHAN FAN (a1) (a2) and FAYOU ZHAO (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed