Skip to main content Accessibility help
×
Home

A RESULT OF PALEY AND WIENER ON DAMEK–RICCI SPACES

  • MITHUN BHOWMIK (a1)

Abstract

A classical result due to Paley and Wiener characterizes the existence of a nonzero function in $L^{2}(\mathbb{R})$ , supported on a half-line, in terms of the decay of its Fourier transform. In this paper, we prove an analogue of this result for Damek–Ricci spaces.

Copyright

Footnotes

Hide All

The author was supported by Research Fellowship from Indian Statistical Institute, India.

Current address: Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India mithunbhowmik123@gmail.com, mithun@math.iitb.ac.in

Footnotes

References

Hide All
[1] Anker, J., Damek, E. and Yacoub, C., ‘Spherical analysis on harmonic AN groups’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 23(4) (1996), 643679.
[2] Astengo, F., Camporesi, R. and Di Blasio, B., ‘The Helgason Fourier transform on a class of nonsymmetric harmonic spaces’, Bull. Aust. Math. Soc. 55(3) (1997), 405424.
[3] Astengo, F. and Di Blasio, B., ‘A Paley–Wiener theorem on NA harmonic spaces’, Colloq. Math. 80(2) (1999), 211233.
[4] Bhowmik, M. and Sen, S., ‘An uncertainty principle of Paley and Wiener on Euclidean Motion Group’, J. Fourier Anal. Appl. 23(6) (2017), 14451464.
[5] Bhowmik, M. and Sen, S., ‘Uncertainty Principles of Ingham and Paley–Wiener on Semisimple Lie groups’, Israel J. Math. 225(1) (2018), 193221.
[6] Cowling, M., Dooley, A., Korányi, A. and Ricci, F., ‘An approach to symmetric spaces of rank one via groups of Heisenberg type’, J. Geom. Anal. 8(2) (1998), 199237.
[7] Damek, E., ‘Curvature of a semidirect extension of a Heisenberg type nilpotent group’, Colloq. Math. 53(2) (1987), 249253.
[8] Damek, E. and Ricci, F., ‘A class of nonsymmetric harmonic Riemannian spaces’, Bull. Amer. Math. Soc. (N.S.) 27(1) (1992), 139142.
[9] Faraut, J., ‘Un thorme de Paley–Wiener pour la transformation de Fourier sur un espace Riemannien symtrique de rang un’, J. Funct. Anal. 49(2) (1982), 230268.
[10] Helgason, S., Geometric Analysis on Symmetric Spaces, Mathematical Surveys and Monographs, 39 (American Mathematical Society, Providence, RI, 1994).
[11] Helgason, S., The Radon Transform, 2nd edn, Progress in Mathematics, 5 (Birkhäuser, Boston, MA, 1999).
[12] Ingham, A. E., ‘A Note on Fourier Transforms’, J. Lond. Math. Soc. S1‐9(1) (1934), 2932.
[13] Koosis, P., The logarithmic integral I, Cambridge Studies in Advanced Mathematics, 12 (Cambridge University Press, Cambridge, 1998).
[14] Levinson, N., Gap and Density Theorems, American Mathematical Society Colloquium Publications, 26 (American Mathematical Society, New York, 1940).
[15] Levinson, N., ‘On a class of nonvanishing functions’, Proc. Lond. Math. Soc. (2) 41(5) (1936), 393407.
[16] Paley, R. E. A. C. and Wiener, N., Fourier Transforms in the Complex Domain (Reprint of the 1934 original), American Mathematical Society Colloquium Publications, 19 (American Mathematical Society, Providence, RI, 1987).
[17] Paley, R. E. A. C. and Wiener, N., ‘Notes on the theory and application of Fourier transforms. I, II’, Trans. Amer. Math. Soc. 35(2) (1933), 348355.
[18] Ray, S. K. and Sarkar, R. P., ‘Fourier and Radon transform on harmonic NA groups’, Trans. Amer. Math. Soc. 361(8) (2009), 42694297.
[19] Stein, E. M. and Shakarchi, R., Complex Analysis, Princeton Lectures in Analysis, II (Princeton University Press, Princeton, NJ, 2003).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

A RESULT OF PALEY AND WIENER ON DAMEK–RICCI SPACES

  • MITHUN BHOWMIK (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed