Skip to main content Accessibility help
×
Home

POWERS OF COMPOSITION OPERATORS: ASYMPTOTIC BEHAVIOUR ON BERGMAN, DIRICHLET AND BLOCH SPACES

Abstract

We study the asymptotic behaviour of the powers of a composition operator on various Banach spaces of holomorphic functions on the disc, namely, standard weighted Bergman spaces (finite and infinite order), Bloch space, little Bloch space, Bloch-type space and Dirichlet space. Moreover, we give a complete characterization of those composition operators that are similar to an isometry on these various Banach spaces. We conclude by studying the asymptotic behaviour of semigroups of composition operators on these various Banach spaces.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      POWERS OF COMPOSITION OPERATORS: ASYMPTOTIC BEHAVIOUR ON BERGMAN, DIRICHLET AND BLOCH SPACES
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      POWERS OF COMPOSITION OPERATORS: ASYMPTOTIC BEHAVIOUR ON BERGMAN, DIRICHLET AND BLOCH SPACES
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      POWERS OF COMPOSITION OPERATORS: ASYMPTOTIC BEHAVIOUR ON BERGMAN, DIRICHLET AND BLOCH SPACES
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1]Allen, R. F. and Colonna, F., ‘On the isometric composition operators on the Bloch space in ℂn’, J. Math. Anal. Appl. 355 (2009), 675688.
[2]Arendt, W., Batty, C. J. K., Hieber, M. and Neubrander, F., Vector-valued Laplace Transforms and Cauchy Problems, 2nd edn, Monographs in Mathematics, 96 (Birkhäuser, Basel, 2011).
[3]Arendt, W., Chalendar, I., Kumar, M. and Srivastava, S., ‘Asymptotic behaviour of the powers of composition operators on Banach spaces of holomorphic functions’, Indiana Math. J. 64(4) (2018), 15711595.
[4]Bayart, F., ‘Similarity to an isometry of a composition operator’, Proc. Amer. Math. Soc. 131 (2003), 17891791.
[5]Beltrán-Meneu, M. J., Gómez-Collado, M. C., Jordán, E. and Jornet, D., ‘Mean ergodic composition operators on Banach spaces of holomorphic functions’, J. Math. Anal. Appl. 444(2) (2016), 16401651.
[6]Bonet, J., Domański, P., Lindström, M. and Taskinen, J., ‘Composition operators between weighted Banach spaces of analytic functions’, J. Aust. Math. Soc. Ser. A 64(1) (1998), 101118.
[7]Bourdon, P. S. and Shapiro, J., ‘Mean growth of Koenigs eigenfunctions’, J. Amer. Math. Soc. 10 (1997), 299325.
[8]Carswell, B. and Hammond, C., ‘Composition operators with maximal norm on weighted Bergman spaces’, Proc. Amer. Math. Soc. 134 (2006), 25992605.
[9]Chacón, G. A., Chacón, G. R. and Giménez, J., ‘Composition operators on the Dirichlet space and related problems’, Bol. Asoc. Mat. Venez. 13(2) (2006), 155164.
[10]Chalendar, I. and Partington, J. R., ‘Norm estimates for weighted composition operators on spaces of holomorphic functions’, Complex Anal. Oper. Theory 8(5) (2014), 10871095.
[11]Contreras, M. D. and Hernandez-Diaz, A. G., ‘Weighted composition operators in weighted Banach spaces of analytic functions’, J. Aust. Math. Soc. Ser. A 69(1) (2000), 4160.
[12]Cowen, C. C. and MacCluer, B. D., Composition Operators on Spaces of Analytic Functions (CRC Press, Boca Raton, FL, 1995).
[13]Gallardo-Gutíerrez, E. A. and Montes-Rodríguez, A., ‘Adjoints of linear fractional composition operators on the Dirichlet space’, Math. Ann. 327 (2003), 117134.
[14]Higdon, W. M., ‘The spectra of composition operators from linear fractional maps acting upon the Dirichlet space’, J. Funct. Anal. 220 (2005), 5575.
[15]Jovović, M. and MacCluer, B. D., ‘Composition operators on Dirichlet spaces’, Acta Sci. Math. (Szeged) 63(1–2) (1997), 229247.
[16]Lou, Z., ‘Composition operators on Bloch type spaces’, Analysis 23 (2003), 8195.
[17]MacCluer, B. D. and Saxe, K., ‘Spectra of composition operators on the Bloch and Bergman spaces’, Israel J. Math. 128 (2002), 325354.
[18]Madigan, K., ‘Composition operators on analytic Lipschitz spaces’, Proc. Amer. Math. Soc. 119(2) (1993), 465473.
[19]Madigan, K. and Matheson, A., ‘Compact composition operators on the Bloch space’, Trans. Amer. Math. Soc. 347(7) (1995), 26792687.
[20]Martín, M. J. and Vukotić, D., ‘Norms and spectral radii of composition operators acting on the Dirichlet space’, J. Math. Anal. Appl. 304 (2005), 2232.
[21]Martín, M. J. and Vukotić, D., ‘Isometries of some classical function spaces among the composition operators’, Contemp. Math. 393 (2006), 133138.
[22]Martín, M. J. and Vukotić, D., ‘Isometries of the Dirichlet space among the composition operators’, Proc. Amer. Math. Soc. 134(6) (2006), 17011705.
[23]Martín, M. J. and Vukotić, D., ‘Isometric composition operators on the Bloch space among the composition operators’, Bull. Lond. Math. Soc. 39(1) (2007), 151155.
[24]Montes-Rodríguez, A., ‘The essential norm of a composition operator on Bloch spaces’, Pacific J. Math. 188 (1999), 339351.
[25]Montes-Rodríguez, A., ‘Weighted composition operators on weighted Banach spaces of analytic functions’, J. Lond. Math. Soc. 61(2) (2000), 872884.
[26]Petersen, K., Ergodic Theory (Cambridge University Press, Cambridge, 1983).
[27]Pommerenke, C., Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299 (Springer, Berlin, 1992).
[28]Shapiro, J. H., ‘The essential norm of a composition operator’, Ann. of Math. (2) 125 (1987), 375404.
[29]Smith, W., ‘Composition operators between Bergman and Hardy spaces’, Trans. Amer. Math. Soc. 348 (1996), 23312348.
[30]Vukotić, D., ‘A sharp estimate for A 𝛼 functions in ℂn’, Proc. Amer. Math. Soc. 117 (1993), 753756.
[31]Xiao, J., ‘Composition operators associated with Bloch-type spaces’, Complex Var. Theory Appl. 46(2) (2001), 109121.
[32]Xiong, C., ‘Norm of composition operators on the Bloch space’, Bull. Aust. Math. Soc. 70 (2004), 293299.
[33]Yosida, K., Functional Analysis (Springer, Berlin, Heidelberg, 1965).
[34]Zorboska, N., ‘Isometric composition operators on the Bloch-type spaces’, C. R. Math. Acad. Sci. Soc. R. Can. 29(3) (2007), 9196.
[35]Zorboska, N., ‘Isometric and closed-range composition operators between Bloch-type spaces’, Int. J. Math. Math. Sci. 15 (2011), Article ID 132541, 15 pages.
[36]Zhu, K., Operator Theory in Function Spaces, 2nd edn, Mathematical Surveys and Monographs, 138 (American Mathematical Society, Providence, RI, 2007).
[37]Zygmund, A., Trigonometric Series, Vol. I (Cambridge University Press, Cambridge, 1959).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

POWERS OF COMPOSITION OPERATORS: ASYMPTOTIC BEHAVIOUR ON BERGMAN, DIRICHLET AND BLOCH SPACES

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.