Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-vmws4 Total loading time: 0.796 Render date: 2021-04-12T17:28:26.557Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

ON THE NUMBER OF PRIME ORDER SUBGROUPS OF FINITE GROUPS

Published online by Cambridge University Press:  15 December 2009

TIMOTHY C. BURNESS
Affiliation:
School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK (email: t.burness@soton.ac.uk)
STUART D. SCOTT
Affiliation:
Department of Mathematics, University of Auckland, Auckland, New Zealand (email: s.scott@auckland.ac.nz)
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

Let G be a finite group and let δ(G) be the number of prime order subgroups of G. We determine the groups G with the property δ(G)≥∣G∣/2−1, extending earlier work of C. T. C. Wall, and we use our classification to obtain new results on the generation of near-rings by units of prime order.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association, Inc. 2009

References

[1]Burness, T. C., ‘Fixed point ratios in actions of finite classical groups, II’, J. Algebra 309 (2007), 80138.CrossRefGoogle Scholar
[2] The GAP Group, GAP  – Groups, Algorithms, and Programming, Version 4.4.Google Scholar
[3]Gorenstein, D., Finite Groups (Harper & Row, New York, 1968).Google Scholar
[4]Hegarty, P. V., ‘Soluble groups with an automorphism inverting many elements’, Math. Proc. R. Ir. Acad. 105A (2005), 5973.CrossRefGoogle Scholar
[5]Kleidman, P. B. and Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, 129 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[6]Lawther, R., Liebeck, M. W. and Seitz, G. M., ‘Fixed point ratios in actions of finite exceptional groups of Lie type’, Pacific J. Math. 205 (2002), 393464.CrossRefGoogle Scholar
[7]Liebeck, H. and MacHale, D., ‘Groups with automorphisms inverting most elements’, Math. Z. 124 (1972), 5163.CrossRefGoogle Scholar
[8]Manning, W. A., ‘Groups in which a large number of operators may correspond to their inverses’, Trans. Amer. Math. Soc. 7 (1906), 233240.CrossRefGoogle Scholar
[9]Miller, G. A., ‘Non-abelian groups admitting more than half inverse correspondences’, Proc. Nat. Acad. Sci. 16 (1930), 168172.CrossRefGoogle Scholar
[10]Neumaier, C., ‘The fraction of bijections generating the near-ring of 0-preserving functions’, Arch. Math. (Basel) 82 (2005), 497507.CrossRefGoogle Scholar
[11]Neumann, H., ‘Varieties of groups and their associated near-rings’, Math. Z. 65 (1956), 3669.CrossRefGoogle Scholar
[12]Pilz, G., Near-Rings, North-Holland Mathematics Studies, 23 (North-Holland Publishing Co., Amsterdam, 1983).Google Scholar
[13]Potter, W. M., ‘Nonsolvable groups with an automorphism inverting many elements’, Arch. Math. (Basel) 50 (1988), 292299.CrossRefGoogle Scholar
[14]Scott, S. D., Generators of Finite Transformation Nearrings, Book in preparation.Google Scholar
[15]Scott, S. D., ‘Involution near-rings’, Proc. Edinb. Math. Soc. 22 (1979), 241245.CrossRefGoogle Scholar
[16]Scott, S. D., ‘Transformation near-rings generated by a unit of order three’, Algebra Colloq. 4 (1997), 371392.Google Scholar
[17]Vaughan-Lee, M., The Restricted Burnside Problem, London Mathematical Society Monographs, 8 (Oxford University Press, Oxford, 1993).Google Scholar
[18]Wall, C. T. C., ‘On groups consisting mostly of involutions’, Math. Proc. Cambridge Philos. Soc. 67 (1970), 251262.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 142 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

Access Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ON THE NUMBER OF PRIME ORDER SUBGROUPS OF FINITE GROUPS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ON THE NUMBER OF PRIME ORDER SUBGROUPS OF FINITE GROUPS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ON THE NUMBER OF PRIME ORDER SUBGROUPS OF FINITE GROUPS
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *