Skip to main content Accessibility help
×
×
Home

On Normal Subgroups of Products of Nilpotent Groups

  • Bernhard Amberg (a1), Silvana Franciosi (a1) and Francesco De Giovanni (a2)

Abstract

Let G be a group factorized by finitely many pairwise permutable nilpotent subgroups. The aim of this paper is to find conditions under which at least one of the factors is contained in a proper normal subgroup of G.

Copyright

References

Hide All
[1]Amberg, B., ‘Über auflösbare Produkte nilpotenter Gruppen’, Arch. Math. (Basel) 30 (1978), 361363.
[2]Amberg, B., ‘Products of two abelian subgroups’, Rocky Mountain J. Math. 14 (1984), 541547.
[3]Amberg, B., ‘Produkte von Gruppen mit endlichem torsionfreiem Rang’, Arch. Math. (Basel) 45 (1985), 398406.
[4]Amberg, B., ‘On groups which are the product of abelian subgroups’, Glasgow Math. J. 26 (1985), 151156.
[5]Amberg, B. and Robinson, D. J. S., ‘Soluble groups which are products of nilpotent minimax groups’, Arch. Math. (Basel) 42 (1984), 385390.
[6]Belyaev, V. V., ‘Locally finite groups with Černikov Sylow p-subgroups’, Algebra i Logika 20 (1981), 605619 =
Algebra and Logic 20 (1981), 393402.
[7]Černikov, N. S., ‘Factorable locally graded groups’, Dokl. Akad. Nauk SSSR 260 (1981), 543546 =
Soviet Math. Dokl. 24 (1981), 312315.
[8]Gillam, H. D., ‘A finite p-group P = AB with Core (A) = Core (B) = 1’, Rocky Mountain J. Math. 3 (1973), 1517.
[9]Holt, D. F. and Howlett, R. B., ‘On groups which are the product of two abelian groups’, J. London Math. Soc. (2) 29 (1984), 453461.
[10]Itô, N., ‘Über das Produkt von zwei abelschen Gruppen’, Math. Z. 62 (1955), 400401.
[11]Kegel, O. H., ‘Produkte nilpotenter Gruppen’, Arch. Math. (Basel) 12 (1961), 9093.
[12]Kegel, O. H. and Wehrfritz, B. A. F., Locally finite groups (North-Holland, Amsterdam, 1973).
[13]Miedniak, B., ‘Auflösbare Produkte unendlicher Gruppen’ (Diplomarbeit, Mainz, 1985).
[14]Robinson, D. J. S., ‘A property of the lower central series of a group’, Math. Z. 107 (1968), 225231.
[15]Robinson, D. J. S., Finiteness conditions and generalized soluble groups, Part 1 and 2 (Springer, Berlin, 1972).
[16]Robinson, D. J. S., ‘Soluble products of nilpotent groups’, J. Algebra 98 (1986), 183196.
[17]Wehrfritz, B. A. F., Infinite linear groups (Springer, Berlin, 1973).
[18]Wielandt, H., ‘Über Produkte von nilpotenten Gruppen’, Illinois J. Math. 2 (1958), 611618.
[19]Zaičev, D. I., ‘Products of abelian groups’, Algebra i Logika 19 (1980), 150172 =
Algebra and Logic 19 (1980), 94106.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed