Skip to main content Accessibility help


  • JING CHEN (a1) (a2), CAI HENG LI (a3) and WEI JUN LIU (a4)


We study the isomorphism problem of vertex-transitive cubic graphs which have a transitive simple group of automorphisms.


Corresponding author


Hide All
[1]Ádám, A., ‘Research problem 2–10’, J. Combin. Theory 2 (1967), 393.
[2]Alspach, B., ‘Isomorphisms of Cayley graphs on abelian groups’, NATO ASI Ser. C 497 (1997), 123.
[3]Alspach, B. and Parsons, T. D., ‘Isomorphisms of circulant graphs and digraphs’, Discrete Math. 25 (1979), 97108.
[4]Babai, L., ‘Isomorphism problem for a class of point-symmetric structures’, Acta Math. Acad. Sci. Hungar. 29 (1977), 329336.
[5]Biggs, N., Algebraic Graph Theory, 2nd edn (Cambridge University Press, New York, 1992).
[6]Dixon, J. D. and Mortimer, B., Permutation Groups (Springer, Berlin, 1996).
[7]Dobson, E., ‘Isomorphism problem for Cayley graph of Z p3’, Discrete Math. 147 (1995), 8794.
[8]Dobson, E., ‘Isomorphism problem for metacirculant graphs of order a product of distinct primes’, Canad. J. Math. 50 (1998), 11761188.
[9]Dobson, E., ‘On the Cayley isomorphism problem for ternary relational structures’, J. Combin. Theory Ser. A 101 (2003), 225248.
[10]Fang, X. G., Li, C. H., Wang, J. and Xu, M. Y., ‘On cubic Cayley graph of finite simple groups’, Discrete Math. 224 (2002), 6775.
[11]Giudici, M., ‘Factorisations of sporadic simple groups’, J. Algebra 304 (2006), 311323.
[12]Godsil, C. D., ‘On the full automorphism group of a graph’, Combinatorica 1 (1981), 243256.
[13]Godsil, C. D., ‘On Cayley graph isomorphisms’, Ars Combin. 15 (1983), 231246.
[14]Godsil, C. and Royle, G., Algebraic Graph Theory (Springer, New York, 2001).
[15]Guralnick, R. M., ‘Subgroups of prime power index in a simple group’, J. Algebra 81 (1983), 304311.
[16]Gross, F., ‘Conjugacy of odd order Hall subgroups’, Bull. Lond. Math. Soc. 19 (1987), 311319.
[17]Kleidman, P. and Liebeck, M., The Subgroup Structure of the Finite Classical Groups (Cambridge University Press, Cambridge, 1990).
[18]Kovács, I. and Muzychuk, M., ‘The group Z p2 × Z q is a CI-group’, Comm. Algebra 37 (2009), 35003515.
[19]Li, C. H., ‘On isomorphisms of finite Cayley graphs—a survey’, Discrete Math. 256 (2002), 301334.
[20]Muzychuk, M., ‘A solution of the isomorphism problem for circulant graphs’, Proc. Lond. Math. Soc. (3) 88 (2004), 141.
[21]Pálfy, P. P., ‘Isomorphism problem for relational structures with a cyclic automorphism’, European J. Combin. 8 (1987), 3543.
[22]Praeger, C. E., ‘An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs’, J. Lond. Math. Soc. (2) 47 (1993), 227239.
[23]Somlai, G., ‘Elementary Abelian p-groups of rank 2p + 3 are not CI-groups’, J. Algebraic Combin. 34 (2011), 323335.
[24]Spiga, P., ‘Elementary Abelian p-groups of rank greater than or equal to 4p − 2 are not CI-groups’, J. Algebraic Combin. 26 (2007), 343355.
[25]Suzuki, M., Group Theory II (Springer, New York, 1985).
[26]Tutte, W. T., ‘On the symmetry of cubic graphs’, Canad. J. Math. 11 (1959), 621624.
[27]Tyshkevich, R. I. and Tan, N. D., ‘A generalisation of Babai’s lemma on Cayley graphs’, Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk 124 (1987), 2932.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


  • JING CHEN (a1) (a2), CAI HENG LI (a3) and WEI JUN LIU (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed