Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T10:40:13.644Z Has data issue: false hasContentIssue false

Multidimensional Volterra integral equations of convolution type

Published online by Cambridge University Press:  09 April 2009

P. G. Laird
Affiliation:
University of WollongongWollongong, N.S.W. 2500, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article, it is shown that the Volterra integral equation of convolution type w − w⊗g = f has a continuous solution w when f, g are continuous functions on Rx and ⊗ denotes a truncated convolution product. A similar result holds when f, g are entire functions of several complex variables. Also simple proofs are given to show when f, g are entire, f⊗g is entire, and, if f⊗g=0, then f = 0 or g = 0. Finally, the set of exponential polynomials and the set of all solutions to linear partial differential equations are considered in relation to this convolution product.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

Bellman, R. and Cooke, K. (1963), Differential-difference equations (Academic Press, New York).Google Scholar
Dickson, D. G. (1973), ‘Convolution equations and harmonic analysis in spaces of entire functions’, Trans. Amer. Math. Soc. 184, 373385.CrossRefGoogle Scholar
Diendonné, J. (1960), Foundations of modern analysis (Academic Press, New York).Google Scholar
Diendonné, J. (1970), Treatise on analysis (Academic Press, New York).Google Scholar
Ditkin, V. A. and Prudnikov, A. P. (1962), Operational calculus in two variables and its applications (Pergamon Press, London).Google Scholar
Erdélyi, A. (1962), Operational calculus and generalized functions (Holt, Rinehart and Winston).Google Scholar
Feller, W. (1966), An introduction to probability theory and its applications, Vol.II (Wiley, New York).Google Scholar
Gutterman, M. (1969), ‘An operational method in partial differential equations’, SIAM J. Appl. Math. 17, 468493.CrossRefGoogle Scholar
Hughes, C. C. and Struble, R. A. (1973), ‘Neocontinuous Mikusiński operators’, Trans. Amer. Math. Soc. 185, 383400.Google Scholar
Laird, P. G. (1974a), ‘Ideals in a ring of exponential polynomials’, J. Austral. Math. Soc. Ser. A 17, 257262.CrossRefGoogle Scholar
Laird, P. G. (1975b), ‘Functional differential equations and continuous mean periodic functions’, J. Math. Anal. Appl. 47, 406423.CrossRefGoogle Scholar
Laird, P. G. (1975), ‘Entire mean periodic functions’, Canad. J. Math. 27, 805818.CrossRefGoogle Scholar
Mikusiński, J. G. and Ryll-Nardzewski, C. (1953), ‘Un théorème sur le produit de composition des fonctions de plusiers variables’, Studia Math. 13, 6268.CrossRefGoogle Scholar
Mikusiński, J. G. (1961), ‘Convolution of functions of several variables’, Studia Math. 20, 301312.CrossRefGoogle Scholar
Parodi, M. (1950), ‘Sur une propriété des équations intégrales de Volterrá n variables’, C. R. Acad. Sci. Paris 230, 2252–3.Google Scholar
Petrovskii, I. G. (1957), Letures on the theory of integral equations (Graylock Press, Rochester).Google Scholar
Royden, H. L. (1963), Real analysis (Macmillan, New York).Google Scholar
Rubel, L. (1977), ‘An operational calculus in miniature’, Applicable Anal. 6, 299304.CrossRefGoogle Scholar
Suryanarayana, M. B. (1972), ‘On multidimensional integral equations of Volterra type’, Pacific J. Math. 41, 809828.CrossRefGoogle Scholar
Treves, F. (1966), Linear partial differential equations with constant coefflcients (Gordon and Breach, New York).Google Scholar
Walter, W. (1970), Differential and integral inequalities (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Yosida, K. (1960), Lectures on differential and integral equations (Interscience, New York).Google Scholar
Zariski, O. and Samuel, P. (1958), Commutative algebra, Vol. I (van Nostrand, Princeton).Google Scholar