Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T18:38:06.869Z Has data issue: false hasContentIssue false

METRIC REGULARITY—A SURVEY PART 1. THEORY

Published online by Cambridge University Press:  14 July 2016

A. D. IOFFE*
Affiliation:
Department of Mathematics, Technion, Haifa 32000, Israel email alexander.ioffe38@gmail.com, ioffe@tx.technion.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Metric regularity theory lies at the very heart of variational analysis, a relatively new discipline whose appearance was, to a large extent, determined by the needs of modern optimization theory in which such phenomena as nondifferentiability and set-valued mappings naturally appear. The roots of the theory go back to such fundamental results of the classical analysis as the implicit function theorem, Sard theorem and some others. This paper offers a survey of the state of the art of some principal parts of the theory along with a variety of its applications in analysis and optimization.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Abraham, P. and Robin, J., Transversal Mappings and Flows (Benjamin Press, New York, 1967).Google Scholar
Arutyunov, A., Avakov, E., Gelman, B., Dmitruk, A. and Obukhovski, V., ‘Locally covering maps in metric spaces and coincidence points’, J. Fixed Point Theory Appl. 5 (2009), 106127.Google Scholar
Aubin, J.-P., ‘Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions’, Advances in Mathematics. Supplementary Studies (ed. Nachbin, L.) (1981), 160232.Google Scholar
Aubin, J.-P., ‘Lipshitz behavior of solutions to convex optimization problems’, Math. Oper. Res. 9 (1984), 87111.CrossRefGoogle Scholar
Aubin, J. P. and Frankowska, H., Set-Valued Analysis (Birkhäuser, Boston, 1990).Google Scholar
Azé, D., ‘A unified theory for metric regularity of multifunctions’, J. Convex Anal. 13 (2006), 225252.Google Scholar
Azé, D. and Benahmed, S., ‘On implicit multifunction theorems’, Set-Valued Anal. 16 (2008), 129155.CrossRefGoogle Scholar
Azé, D. and Corvellec, J.-N., ‘On some variational properties of metric spaces’, J. Fixed Point Theory Appl. 5 (2009), 185200.CrossRefGoogle Scholar
Azé, D., Corvellec, J.-N. and Lucchetti, R., ‘Variational pairs and application to stability in nonsmooth analysis’, Nonlinear Anal. 49 (2002), 643670.CrossRefGoogle Scholar
Azé, D., Chou, C. C. and Penot, J. P., ‘Subtraction theorem and approximate openness of multifunctions’, J. Math. Anal. Appl. 221 (1998), 3358.CrossRefGoogle Scholar
Banach, S., Théorie des opérations linéaires, Monografje Matematyczne (Warszawa, 1932).Google Scholar
Bazaraa, M. S., Goode, J. J. and Nashed, M. Z., ‘On the cones of tangents with applications to mathematical programming’, J. Optim. Theory Appl. 13 (1974), 389426.CrossRefGoogle Scholar
Borwein, J. M., ‘Adjoint process duality’, Math. Oper. Res 8 (1983), 403434.CrossRefGoogle Scholar
Borwein, J. M., ‘Norm duality for convex processes and applications’, J. Optim. Theory Appl. 48 (1986), 5364.CrossRefGoogle Scholar
Borwein, J. M. and Lewis, A. S., Convex Analysis and Nonlinear Optimization, 2nd edn (Springer, 2006).CrossRefGoogle Scholar
Borwein, J. M. and Zhuang, D. M., ‘Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps’, J. Math. Anal. Appl 134 (1988), 441459.CrossRefGoogle Scholar
Borwein, J. M. and Zhu, J., Techniques of Variational Analysis, CMS Books in Mathematics, 20 (Springer, 2006).Google Scholar
Cánovas, M. J., Gómez-Senent, F. J. and Parra, J., ‘Linear regularity, equi-regularity and intersection mappings for convex semi-infinite inequality systems’, Math. Program. B 123 (2010), 3360.CrossRefGoogle Scholar
Cibulka, R., Fabian, M. and Ioffe, A. D., ‘On primal regularity estimates for single-valued mappings’, J. Fixed Point Theory Appl. 17 (2015), 187208.CrossRefGoogle Scholar
Clarke, F. H., ‘Necessary conditions for nonsmooth problems in optimal control and the calculus of variations’, PhD Dissertation, University of Washington, Seattle, 1973.Google Scholar
Clarke, F. H., ‘Generalized gradients and applications’, Trans. Amer. Math. Soc. 205 (1975), 247262.CrossRefGoogle Scholar
Clarke, F. H., Optimization and Nonsmooth Analysis (Wiley-Interscience, New York, 1983).Google Scholar
Clarke, F. H., Ledyaev, Y. S., Stern, R. J. and Wolenski, P. R., Nonsmooth Analysis and Control Theory (Springer, 1998).Google Scholar
Cominetti, R., ‘Metric regularity, tangent sets and second order optimality conditions’, Appl. Math. Optim. 21 (1990), 265287.CrossRefGoogle Scholar
De Giorgi, E., Marino, A. and Tosques, M., ‘Problemi di evoluzione in spazi metrici e curve di massima pendenza’, Atti Acad. Nat. Lincei, Rend. Cl. Sci. Fiz. Mat. Natur. 68 (1980), 180187.Google Scholar
Dmitruk, A. V., Milyutin, A. A. and Osmolovskii, N. P., ‘Ljusternik’s theorem and the theory of extrema’, Russian Math. Surveys 35(6) (1980), 1151.CrossRefGoogle Scholar
Dolecki, S., ‘Semicontinuity in constraint optimization 1’, Control Cybernet. 7(2) (1978), 515.Google Scholar
Dolecki, S., ‘Semicontinuity in constraint optimization 2’, Control Cybernet. 7(3) (1978), 1726.Google Scholar
Dolecki, S., ‘Tangency and dierentiation, some applications of convergence theory’, Ann. Math. Pura Appl. 130 (1982), 223255.CrossRefGoogle Scholar
Dontchev, A. L., ‘The Graves theorem revisited’, J. Convex Anal. 3 (1996), 4554.Google Scholar
Dontchev, A. L. and Frankowska, H., ‘Lyusternik–Graves theorem and fixed points’, Proc. Amer. Math. Soc. 139 (2011), 521534.CrossRefGoogle Scholar
Dontchev, A. L. and Frankowska, H., ‘Lyusternik–Graves theorem and fixed points 2’, J. Convex Anal. 19 (2012), 955974.Google Scholar
Dontchev, A. L., Lewis, A. S. and Rockafellar, R. T., ‘The radius of metric regularity’, Trans. Amer. Math. Soc. 355 (2003), 493517.CrossRefGoogle Scholar
Dontchev, A. L., Quincampoix, M. and Zlateva, N., ‘Aubin criterion for metric regularity’, J. Convex Anal. 13 (2006), 281297.Google Scholar
Dontchev, A. L. and Rockafellar, R. T., Implicit Functions and Solution Mappings, 2nd edn (Springer, 2014).CrossRefGoogle Scholar
Drusvyatsky, D., Ioffe, A. D. and Lewis, A. S., ‘Alternating projections and coupling slope’, Found. Comput. Math. (2015), to appear, arXiv:1401.7569v1.Google Scholar
Durea, M. and Strugariu, R., ‘Openness, stability and implicit function theorems’, Nonlinear Anal. 75 (2012), 12461259.CrossRefGoogle Scholar
Fabian, M. and Preiss, D., ‘A generalization of the interior mapping theorem of Clarke and Pourciau’, Comment. Math. Univ. Carolin. 28 (1987), 311324.Google Scholar
Fabian, M. and Zhivkov, N. V., ‘A characterization of Asplund spaces with the help of 𝜀-supports of Ekeland and Lebourg’, C. R. Acad. Bulgare Sci. 38 (1985), 671674.Google Scholar
Facchinei, F. and Pang, J. S., Finite-Dimensional Variational Inequalities and Complementarity Problems (Springer, New York, 2003).Google Scholar
Frankowska, H., ‘Some inverse mapping theorems’, Ann. Inst. H. Poincaré Analyse Non Linéaire 7 (1990), 183234.CrossRefGoogle Scholar
Fusek, P., ‘On metric regularity of weakly almost piecewise smooth functions and some applications in nonlinear semi-definite programming’, SIAM J. Optim. 23 (2013), 10411061.CrossRefGoogle Scholar
Gelman, B. D., ‘A generalized theorem about implicit mappings’, Funktsional. Anal. Prilozhen 35 (2001), 2835.Google Scholar
Gfrerer, H., ‘First and second order characterizations of metric subregularity and calmness of constraint set mappings’, SIAM J. Optim. 21 (2011), 14391474.CrossRefGoogle Scholar
Graves, L. M., ‘Some mapping theorems’, Duke Math. J. 17 (1950), 111114.CrossRefGoogle Scholar
Grothendieck, A., ‘Sketch of a proposal’, in: Geometric Galois Actions (eds. Schneps, L. and Lochak, P.) (Cambridge University Press, Cambridge, 1997).Google Scholar
Guillemin, V. and Pollack, A., Differential Topology (Prentice-Hall, Englewood Cliffs, New Jersey, 1976).Google Scholar
Ioffe, A. D., ‘Sous-differentielles approchées des fonctions numériques’, C.R. Acad. Sci. Paris 292 (1981), 675678.Google Scholar
Ioffe, A. D., ‘Non-smooth analysis: differential calculus of non-differentiable mappings’, Trans. Amer. Math. Soc. 255 (1981), 155.CrossRefGoogle Scholar
Ioffe, A. D., ‘Approximate subdifferentials and applications 1. The finite dimensional theory’, Trans. Amer. Math. Soc. 28 (1984), 389416.Google Scholar
Ioffe, A. D., ‘On the local surjection property’, Nonlinear Anal. 11 (1987), 565592.CrossRefGoogle Scholar
Ioffe, A. D., ‘Approximate subdifferentials and applications 3. The metric theory’, Mathematika 36 (1989), 138.CrossRefGoogle Scholar
Ioffe, A. D., ‘Variational methods in local and global nonsmooth analysis’, in: Nonlinear Analysis, Differential Equations and Control, NATO Science Series C: Mathematical and Physical Sciences, 258 (eds. Clarke, F. H. and Stern, R. J.) (1999), 447502.CrossRefGoogle Scholar
Ioffe, A. D., ‘Metric regularity and subdifferential calculus’, Uspekhi Mat. Nauk 55(3) (2000), 103162; (in Russian), English translation: Russian Math. Surveys 55 (2000), 501–558.Google Scholar
Ioffe, A. D., ‘On regularity estimates for mappings between embedded manifolds’, Control Cybernet. 36 (2007), 659668.Google Scholar
Ioffe, A. D., ‘Regularity on fixed sets’, SIAM J. Optim. 21 (2011), 13451370.CrossRefGoogle Scholar
Ioffe, A. D., ‘On the general theory of subdifferentials’, Adv. Nonlinear Anal. 1 (2012), 47120.Google Scholar
Ioffe, A. D., ‘Convexity and variational analysis’, in: Computational and Analytical Mathematics (eds. Bailey, D., Bauschke, H., Garvan, F., Thera, M., Vanderwerff, J. and Wolkovicz, H.) (Springer, 2013), 397428.Google Scholar
Ioffe, A. D., ‘Separable reduction of metric regularity properties’, in: Constructive Nonsmooth Analysis and Related Topics, Springer Optimization and Applications, 87 (eds. Demyanov, V. F., Pardalos, P. M. and Batsin, M.) (Springer, 2013).Google Scholar
Ioffe, A. D., ‘Metric regularity, fixed points and some associated problems of variational analysis’, J. Fixed Point Theory Appl. 15 (2014), 6799.CrossRefGoogle Scholar
Ioffe, A.D., ‘Metric regularity—a survey, Part 2. Applications’, J. Aust. Math. Soc., in press.Google Scholar
Ioffe, A. D. and Outrata, J. V., ‘On metric and calmness qualification conditions in subdifferential calculus’, Set-Valued Anal. 16 (2008), 199227.CrossRefGoogle Scholar
Ioffe, A. D. and Sekiguchi, Y., ‘Regularity estimates for convex multifunctions’, Math. Program. B 117 (2009), 255270.CrossRefGoogle Scholar
Ioffe, A. D. and Tihomirov, V. M., Theory of Extremal Problems (Nauka, Moscow, 1974), (in Russian); English translation: North-Holland 1979.Google Scholar
Klatte, D. and Kummer, B., Nonsmooth Equations in Optimization (Kluwer, Dordrecht, 2002).Google Scholar
Kruger, A. Y., ‘Generalized differentials of nonsmooth functions, mimeographed notes’, 1332–81 (Belorussian State University, 1981), 64 pages (in Russian).Google Scholar
Kruger, A. Y., ‘Generalized differentials of nonsmooth functions and necessary conditions for an extremum’, Sib. Math. J. 26 (1985), 370379.CrossRefGoogle Scholar
Kruger, A.Y., ‘A covering theorem for set-valued mappings’, Optimization 19 (1988), 763780.CrossRefGoogle Scholar
Kruger, A. Y., ‘About regularity of collections of sets’, Set-Valued Anal. 14 (2006), 187206.CrossRefGoogle Scholar
Kruger, A. Y. and Mordukhovich, B. S., ‘Extremal points and the Euler equation in nonsmooth optimization’, Dokl. Acad. Nauk BSSR 24 (1980), 684687; (in Russian).Google Scholar
Ledyaev, Y. S. and Zhu, Q. J., ‘Implicit multifunction theorem’, Set-Valued Anal. 7 (1999), 147162.CrossRefGoogle Scholar
Lewis, A. S., Luke, D. R. and Malick, J., ‘Local linear convergence for alternating and averaged nonconvex projections’, Found. Comput. Math. 9 (2009), 485513.CrossRefGoogle Scholar
Lyusternik, L. A., ‘On conditional extremums of functionals’, Sb. Math. (3) 41 (1934), 390401; (in Russian).Google Scholar
Meng, K. W. and Yang, X. Q., ‘Equivalent conditions for local error bounds’, Set-Valued Var. Anal. 20 (2012), 617636.CrossRefGoogle Scholar
Mordukhovich, B. S., Approximation Methods in Problems of Optimization and Control (Nauka, Moscow, 1988), (in Russian).Google Scholar
Mordukhovich, B. S., ‘Complete characterization of openness, metric regularity and Lipschitzian properties of multifunctions’, Trans. Amer. Math. Soc. 340 (1993), 135.CrossRefGoogle Scholar
Mordukhovich, B. S., Variational Analysis and Generalized Differentiation, vol. 1, 2 (Springer, 2006).Google Scholar
Mordukhovich, B. S. and Shao, Y., ‘On nonconvex subdifferential calculus in Banach spaces’, J. Convex Anal. 2 (1995), 211227.Google Scholar
Mordukhovich, B. S. and Shao, Y., ‘Nonsmooth sequential analysis in Asplund spaces’, Trans. Amer. Math. Soc. 348 (1996), 12351280.CrossRefGoogle Scholar
Ngai, H. V. and Théra, M., ‘Error bounds and implicit multifunctions in smooth Banach spaces and applications to optimization’, Set-Valued Anal. 12 (2004), 195223.CrossRefGoogle Scholar
Ngai, H. V., Tron, N. H. and Théra, M., ‘Implicit multifunction theorem in complete metric spaces’, Math. Program. B 139 (2013), 301326.Google Scholar
Nirenberg, L., Topics in Nonlinear Functional Analysis, Lecture Notes (Courant Institute of Mathematical Sciences, New York University, 1974).Google Scholar
Penot, J.-P., ‘Sous-différentiels de fonctions numériques non convexes’, C. R. Acad. Sci. Paris 278 (1974), 15531555.Google Scholar
Penot, J.-P., ‘Metric regularity, openness and Lipschitzean behaviour of multifunctions’, Nonlinear Anal. 13 (1989), 629643.CrossRefGoogle Scholar
Penot, J.-P., Calculus Without Derivatives, Graduate Texts in Mathematics, 266 (Springer, 2012).Google Scholar
Ptàk, V., ‘A quantitative refinement of a closed graph theorem’, Czechoslovak Math. J. 24 (1974), 503506.CrossRefGoogle Scholar
Robinson, S. M., ‘Normed convex processes’, Trans. Amer. Math. Soc. 174 (1972), 127140.CrossRefGoogle Scholar
Robinson, S. M., ‘Stability theory for system of inequalities. Part II: Differentiable nonlinear systems’, SIAM J. Numer. Anal. 13 (1976), 497513.CrossRefGoogle Scholar
Robinson, S. M., ‘Strongly regular generalized equations’, Math. Oper. Res. 5 (1980), 4362.CrossRefGoogle Scholar
Rockafellar, R. T., ‘Monotone processes of convex and concave type’, Mem. Amer. Math. Soc. 77 (1967).Google Scholar
Rockafellar, R. T. and Wets, R. J. B., Variational Analysis (Springer, 1998).CrossRefGoogle Scholar
Sard, A., ‘The measure of critical values of differentiable maps’, Bull. Amer. Math. Soc. 48 (1942), 883890.CrossRefGoogle Scholar
Schauder, J., ‘Uber die Umkerhrung linearer, stetiger Funktionaloperationen’, Studia Math. 2 (1930), 16.CrossRefGoogle Scholar
Schirotzek, W., Non-Smooth Analysis, Universitext (Springer, 2007).CrossRefGoogle Scholar
Thibault, L., Various forms of metric regularity, unpublished note, Univ. de Montpellier (1999).Google Scholar
Tsiskaridze, K. Sh., ‘Extremal problems in Banach spaces’, in: Nekotorye Voprosy Matematicheskoy Theorii Optimalnogo Upravleniya (Some Problems of the Mathematical Theory of Optimal control), Inst. Appl. Math. (Tbilisi State University, 1975), (in Russian).Google Scholar
Ursescu, C., ‘Inherited openness’, Revue Roumaine Math. Pures Appl. 41 (1996), 5–6, 401–416.Google Scholar
Ursescu, C., ‘Linear openness of multifunctions in metric spaces’, Intl J. Math. Math. Sci. (2) (2005), 203214.CrossRefGoogle Scholar