Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-29T22:56:45.222Z Has data issue: false hasContentIssue false

MAXIMAL SEMIGROUP SYMMETRY AND DISCRETE RIESZ TRANSFORMS

Published online by Cambridge University Press:  14 December 2015

TOSHIYUKI KOBAYASHI*
Affiliation:
Kavli IPMU, Japan Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914, Japan email toshi@ms.u-tokyo.ac.jp
ANDREAS NILSSON
Affiliation:
SAAB AB, Bröderna Ugglas gata, 58254 Linköping, Sweden email andreas.nilsson@saabgroup.com
FUMIHIRO SATO
Affiliation:
Department of Mathematics, Rikkyo University, 3-34-1 Nishi-Ikebukuro Toshima-ku, Tokyo 171-8501, Japan email sato@rikkyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We raise a question of whether the Riesz transform on $\mathbb{T}^{n}$ or $\mathbb{Z}^{n}$ is characterized by the ‘maximal semigroup symmetry’ that the transform satisfies. We prove that this is the case if and only if the dimension is one, two or a multiple of four. This generalizes a theorem of Edwards and Gaudry for the Hilbert transform on $\mathbb{T}$ and $\mathbb{Z}$ in the one-dimensional case, and extends a theorem of Stein for the Riesz transform on $\mathbb{R}^{n}$. Unlike the $\mathbb{R}^{n}$ case, we show that there exist infinitely many linearly independent multiplier operators that enjoy the same maximal semigroup symmetry as the Riesz transforms on $\mathbb{T}^{n}$ and $\mathbb{Z}^{n}$ if the dimension $n$ is greater than or equal to three and is not a multiple of four.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Bourbaki, N., Elements of Mathematics: Algebra I (Springer, Berlin, 1989).Google Scholar
Dieudonné, J., ‘Sur les multiplicateurs des similitudes’, Rend. Circ. Mat. Palermo (2) 3 (1954), 398408; reproduced in Choix d’oevres mathématiques, Tome II (Hermann, Paris, 1981), 408–418 (in French).Google Scholar
Edwards, R. E. and Gaudry, G. I., Littlewood–Paley and Multiplier Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 90 (Springer, Berlin–Heidelberg, 1977).Google Scholar
Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84 (Springer, New York, 1990).Google Scholar
Kobayashi, T. and Nilsson, A., ‘Group invariance and L p-bounded operators’, Math. Z. 260 (2008), 335354.Google Scholar
Kobayashi, T. and Nilsson, A., ‘Indefinite higher Riesz transforms’, Ark. Mat. 47 (2009), 331344.Google Scholar
Sato, M., ‘Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note’, Nagoya Math. J. 120 (1990), 134; English translation of Sugaku-no-Ayumi 15 (1970), 83–157 (translated by M. Muro).Google Scholar
Schmutz, E., ‘Rational points on the unit sphere’, Cent. Eur. J. Math. 6 (2008), 482487.Google Scholar
Serre, J.-P., A Course in Arithmetic, Graduate Texts in Mathematics, 7 (Springer, New York, 1996).Google Scholar
Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30 (Princeton University Press, Princeton, NJ, 1970).Google Scholar
Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32 (Princeton University Press, Princeton, NJ, 1971).Google Scholar