[1]
Auscher, P., Duong, X. T. and McIntosh, A., ‘Boundedness of Banach space valued singular integral operators and Hardy spaces’, Unpublished manuscript, 2004.

[2]
Auscher, P., McIntosh, A. and Russ, E., ‘Hardy spaces of differential forms on Riemannian manifolds’, J. Geom. Anal.
18 (2008), 192–248.

[3]
Auscher, P. and Russ, E., ‘Hardy spaces and divergence operators on strongly Lipschitz domains of ℝ^{
n
}
’, J. Funct. Anal.
201 (2003), 148–184.

[4]
Bui, T. A. and Duong, X. T., ‘Weighted Hardy spaces associated with operators and boundedness of singular integrals’, Preprint, 2012, arXiv:1202.2063.
[5]
Bui, H.-Q., Paluszyński, M. and Taibleson, M. H., ‘A maximal function characterization of Besov–Lipschitz and Triebel–Lizorkin spaces’, Studia Math.
119 (1996), 219–246.

[6]
Bui, H.-Q., Paluszyński, M. and Taibleson, M. H., ‘Characterization of the Besov–Lipschitz and Triebel–Lizorkin spaces. The case *q* < 1’, J. Fourier Anal. Appl.
3 (1997), 837–846.

[7]
Coifman, R. R. and Weiss, G., ‘Extensions of Hardy spaces and their use in analysis’, Bull. Amer. Math. Soc. (N.S.)
83 (1977), 569–645.

[8]
Duong, X. T. and Li, J., ‘Hardy spaces associated to operators satisfying Davies–Gaffney estimates and bounded holomorphic functional calculus’, J. Funct. Anal.
264 (2013), 1409–1437.

[9]
Duong, X. T., Li, J. and Yan, L., ‘A Littlewood–Paley type decomposition and weighted Hardy spaces associated with operators’, J. Geom. Anal.
26 (2016), 1617–1646.

[10]
Duong, X. T., Ouhabaz, E. M. and Sikora, A., ‘Plancherel-type estimates and sharp spectral multipliers’, J. Funct. Anal.
196 (2002), 443–485.

[11]
Duong, X. T. and Yan, L., ‘Duality of Hardy and BMO spaces associated with operators with heat kernel bounds’, J. Amer. Math. Soc.
18 (2005), 943–973.

[12]
Duong, X. T. and Yan, L., ‘New function spaces of BMO type, the John–Nirenberg inequality, interpolation, and applications’, Comm. Pure Appl. Math.
58 (2005), 1375–1420.

[13]
Duong, X. T. and Yan, L., ‘Spectral multipliers for Hardy spaces associated to nonnegative self-adjoint operators satisfying Davies–Gaffney estimates’, J. Math. Soc. Japan
63 (2011), 295–319.

[14]
Dziubański, J. and Preisner, M., ‘On Riesz transforms characterization of *H*
^{1} spaces associated with some Schrödinger operators’, Potential Anal.
35 (2011), 39–50.

[15]
Dziubański, J. and Zienkiewicz, J., ‘Hardy space *H*
^{1} associated to Schrödinger operator with potential satisfying reverse Hölder inequality’, Rev. Mat. Iberoam.
15 (1999), 279–296.

[16]
Dziubański, J. and Zienkiewicz, J.,
*H*
^{
p
} Spaces for Schrödinger Operators, Fourier Analysis and Related Topics (Bpolhk edlewo, 2000), Banach Center Publications, 56 (Polish Academy of Sciences, Warsaw, 2002), 45–53.

[17]
Garcia-Cuerva, J., ‘Weighted *H*
^{
p
} spaces’, Dissertationes Math.
162 (1979), 1–63.

[18]
Genebashvili, I., Gogatishvili, A., Kokilashvili, V. and Krbec, M., Weight Theory for Integral Transforms on Spaces of Homogeneous Type (Longman, Harlow, 1998).

[19]
Gong, R. and Yan, L., ‘Littlewood–Paley and spectral multipliers on weighted *L*
^{
p
} spaces’, J. Geom. Anal.
24 (2014), 873–900.

[20]
Hofmann, S., Lu, G., Mitrea, D., Mitrea, M. and Yan, L., ‘Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates’, Mem. Amer. Math. Soc.
214 (2011), 1–78.

[21]
Hofmann, S. and Mayboroda, S., ‘Hardy and BMO spaces associated to divergence form elliptic operators’, Math. Ann.
344 (2009), 37–116.

[22]
Jiang, R. and Yang, D., ‘New Orlicz–Hardy spaces associated with divergence form elliptic operators’, J. Funct. Anal.
258 (2010), 1167–1224.

[23]
Jiang, R. and Yang, D., ‘Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates’, Commun. Contemp. Math.
13 (2011), 331–373.

[24]
Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Mathematical Society Monographs, 31 (Princeton University Press, Princeton, NJ, 2005).

[25]
Rychkov, V. S., ‘On a theorem of Bui, Paluszyński and Taibleson’, Proc. Steklov Inst.
227 (1999), 280–292.

[26]
Song, L. and Yan, L., ‘Riesz transforms associated to Schrödinger operators on weighted Hardy spaces’, J. Funct. Anal.
259 (2010), 1466–1490.

[27]
Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30 (Princeton University Press, Princeton, NJ, 1970).

[28]
Strömberg, J.-O. and Torchinsky, A., Weighted Hardy Spaces, Lecture Notes in Mathematics, 1381 (Springer, Berlin, 1989).

[29]
Wu, S., ‘A wavelet characterization for weighted Hardy spaces’, Rev. Mat. Iberoam.
8 (1992), 329–349.

[30]
Yan, L., ‘Classes of Hardy spaces associated with operators, duality theory and applications’, Trans. Amer. Math. Soc.
360 (2008), 4383–4408.