[1]
Brandt, A. J., ‘The free Lie ring and Lie representations of the full linear group’, Trans. Amer. Math. Soc.
56 (1944), 528–536.

[2]
Bryant, R. M. and Schocker, M., ‘The decomposition of Lie powers’, Proc. Lond. Math. Soc. (3)
93(1) (2006), 175–196.

[3]
Bryant, R. M. and Stöhr, R., ‘Fixed points of automorphisms of free Lie algebras’, Arch. Math. (Basel)
67(4) (1996), 281–289.

[4]
Bryant, R. M. and Stöhr, R., ‘On the module structure of free Lie algebras’, Trans. Amer. Math. Soc.
352(2) (2000), 901–934.

[5]
Bryant, R. M and Stöhr, R., ‘Lie powers in prime degree’, Q. J. Math.
56(4) (2005), 473–489.

[6]
Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Free Lie algebras as modules for symmetric groups’, J. Aust. Math. Soc. Ser. A
67(2) (1999), 143–156.

[7]
Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Invariant bases for free Lie rings’, Q. J. Math.
53(1) (2002), 1–17.

[8]
Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Lie powers of modules for groups of prime order’, Proc. Lond. Math. Soc. (3)
84(2) (2002), 343–374.

[9]
Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Lie powers of modules for GL(2, *p*)’, J. Algebra
260(2) (2003), 617–630.

[10]
Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Subalgebras of free restricted Lie algebras’, Bull. Aust. Math. Soc.
72(1) (2005), 147–156.

[11]
Donkin, S. and Erdmann, K., ‘Tilting modules, symmetric functions, and the module structure of the free Lie algebra’, J. Algebra
203(1) (1998), 69–90.

[12]
Erdmann, K. and Kovács, L. G., ‘Metabelian Lie powers of the natural module for a general linear group’, J. Algebra
352 (2012), 232–267.

[13]
Erdmann, K. and Schocker, M., ‘Modular Lie powers and the Solomon descent algebra’, Math. Z.
253(2) (2006), 295–313.

[14]
Gupta, C. K., ‘The free centre-by-metabelian groups’, J. Aust. Math. Soc.
16 (1973), 294–299; Collection of articles dedicated to the memory of Hanna Neumann, III.

[15]
Johnson, M., ‘Standard tableaux and Klyachko’s theorem on Lie representations’, J. Combin. Theory Ser. A
114(1) (2007), 151–158.

[16]
Johnson, M. and Stöhr, R., ‘Free central extensions of groups and modular Lie powers of relation modules’, Proc. Amer. Math. Soc.
138(11) (2010), 3807–3814.

[17]
Klyachko, A. A., ‘Lie elements in the tensor algebra’, Siberian Math. J.
15(6) (1975), 914–920; translated from *Sibirsk. Mat. Zh.*
**15** (6) (1974), 1296–1304.

[18]
Kovács, L. G. and Stöhr, R., ‘Module structure of the free Lie ring on three generators’, Arch. Math. (Basel)
73(3) (1999), 182–185.

[19]
Kovács, L. G. and Stöhr, R., ‘Lie powers of the natural module for GL(2)’, J. Algebra
229(2) (2000), 435–462.

[20]
Kovács, L. G. and Stöhr, R., ‘On Lie powers of regular modules in characteristic 2’, Rend. Semin. Mat. Univ. Padova
112 (2004), 41–69.

[21]
Kovács, L. G. and Stöhr, R., ‘A combinatorial proof of Klyachko’s theorem on Lie representations’, J. Algebraic Combin.
23(3) (2006), 225–230.

[22]
Kovács, L. G. and Stöhr, R., ‘Lie powers of relation modules for groups’, J. Algebra
326 (2011), 192–200.

[23]
Kraśkiewicz, W. and Weyman, J., ‘Algebra of coinvariants and the action of a Coxeter element’, Bayreuth. Math. Schr.
63 (2001), 265–284; Preprint, 1987.

[24]
Kuz’min, Yu. V., ‘Free center-by-metabelian groups, Lie algebras and D-groups’, Izv. Akad. Nauk SSSR Ser. Mat.
41(1) (1977), 3–33 (in Russian).

[25]
Lee, M. P., ‘Integral representations of dihedral groups of order 2*p*
’, Trans. Amer. Math. Soc.
110 (1964), 213–231.

[26]
V. D. Mazurov (ed.), *Kourovka Notebook: Unsolved Problems in Group Theory*, 11th edn, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1990.

[27]
Schocker, M., ‘The descent algebra of the symmetric group’, in: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, Fields Institute Communications, 40 (American Mathematical Society, Providence, RI, 2004), 145–161.

[28]
Schur, I., ‘Über die rationalen Darstellungen der allgemeinen linearen Gruppe, (1927)’, in: Gesammelte Abhandlungen, III (eds. Brauer, A. and Rohrbach, H.) (Springer, Berlin, 1973), 68–85.

[29]
Selick, P. and Wu, J., ‘Some calculations of Lie(*n*)_{max} for low *n*
’, J. Pure Appl. Algebra
212(11) (2008), 2570–2580.

[30]
Shmelkin, A. L., ‘Wreath products and varieties of groups’, Izv. Akad. Nauk SSSR Ser. Mat.
29 (1965), 149–170 (in Russian).

[31]
Stöhr, R., ‘On torsion in free central extensions of some torsion-free groups’, J. Pure Appl. Algebra
46 (1987), 249–289.

[32]
Thrall, R. M., ‘On symmetrized Kronecker powers and the structure of the free Lie ring’, Amer. J. Math.
64 (1942), 371–388.

[33]
Wever, F., ‘Über Invarianten in Lie’schen Ringen’, Math. Ann.
120 (1949), 563–580.

[34]
Witt, E., ‘Die Unterringe der freien Lieschen Ringe’, Math. Z.
64 (1956), 195–216.