Skip to main content Accessibility help
×
Home

L. G. KOVÁCS’ WORK ON LIE POWERS

  • MARIANNE JOHNSON (a1)

Abstract

From the mid-1990s onwards, the main focus of L. G. Kovács’ research was on Lie powers. This brief survey presents some of the key results on Lie powers obtained by Kovács and his collaborators, and discusses some subsequent developments and applications of this work.

Copyright

References

Hide All
[1] Brandt, A. J., ‘The free Lie ring and Lie representations of the full linear group’, Trans. Amer. Math. Soc. 56 (1944), 528536.
[2] Bryant, R. M. and Schocker, M., ‘The decomposition of Lie powers’, Proc. Lond. Math. Soc. (3) 93(1) (2006), 175196.
[3] Bryant, R. M. and Stöhr, R., ‘Fixed points of automorphisms of free Lie algebras’, Arch. Math. (Basel) 67(4) (1996), 281289.
[4] Bryant, R. M. and Stöhr, R., ‘On the module structure of free Lie algebras’, Trans. Amer. Math. Soc. 352(2) (2000), 901934.
[5] Bryant, R. M and Stöhr, R., ‘Lie powers in prime degree’, Q. J. Math. 56(4) (2005), 473489.
[6] Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Free Lie algebras as modules for symmetric groups’, J. Aust. Math. Soc. Ser. A 67(2) (1999), 143156.
[7] Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Invariant bases for free Lie rings’, Q. J. Math. 53(1) (2002), 117.
[8] Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Lie powers of modules for groups of prime order’, Proc. Lond. Math. Soc. (3) 84(2) (2002), 343374.
[9] Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Lie powers of modules for GL(2, p)’, J. Algebra 260(2) (2003), 617630.
[10] Bryant, R. M., Kovács, L. G. and Stöhr, R., ‘Subalgebras of free restricted Lie algebras’, Bull. Aust. Math. Soc. 72(1) (2005), 147156.
[11] Donkin, S. and Erdmann, K., ‘Tilting modules, symmetric functions, and the module structure of the free Lie algebra’, J. Algebra 203(1) (1998), 6990.
[12] Erdmann, K. and Kovács, L. G., ‘Metabelian Lie powers of the natural module for a general linear group’, J. Algebra 352 (2012), 232267.
[13] Erdmann, K. and Schocker, M., ‘Modular Lie powers and the Solomon descent algebra’, Math. Z. 253(2) (2006), 295313.
[14] Gupta, C. K., ‘The free centre-by-metabelian groups’, J. Aust. Math. Soc. 16 (1973), 294299; Collection of articles dedicated to the memory of Hanna Neumann, III.
[15] Johnson, M., ‘Standard tableaux and Klyachko’s theorem on Lie representations’, J. Combin. Theory Ser. A 114(1) (2007), 151158.
[16] Johnson, M. and Stöhr, R., ‘Free central extensions of groups and modular Lie powers of relation modules’, Proc. Amer. Math. Soc. 138(11) (2010), 38073814.
[17] Klyachko, A. A., ‘Lie elements in the tensor algebra’, Siberian Math. J. 15(6) (1975), 914920; translated from Sibirsk. Mat. Zh. 15 (6) (1974), 1296–1304.
[18] Kovács, L. G. and Stöhr, R., ‘Module structure of the free Lie ring on three generators’, Arch. Math. (Basel) 73(3) (1999), 182185.
[19] Kovács, L. G. and Stöhr, R., ‘Lie powers of the natural module for GL(2)’, J. Algebra 229(2) (2000), 435462.
[20] Kovács, L. G. and Stöhr, R., ‘On Lie powers of regular modules in characteristic 2’, Rend. Semin. Mat. Univ. Padova 112 (2004), 4169.
[21] Kovács, L. G. and Stöhr, R., ‘A combinatorial proof of Klyachko’s theorem on Lie representations’, J. Algebraic Combin. 23(3) (2006), 225230.
[22] Kovács, L. G. and Stöhr, R., ‘Lie powers of relation modules for groups’, J. Algebra 326 (2011), 192200.
[23] Kraśkiewicz, W. and Weyman, J., ‘Algebra of coinvariants and the action of a Coxeter element’, Bayreuth. Math. Schr. 63 (2001), 265284; Preprint, 1987.
[24] Kuz’min, Yu. V., ‘Free center-by-metabelian groups, Lie algebras and D-groups’, Izv. Akad. Nauk SSSR Ser. Mat. 41(1) (1977), 333 (in Russian).
[25] Lee, M. P., ‘Integral representations of dihedral groups of order 2p ’, Trans. Amer. Math. Soc. 110 (1964), 213231.
[26] V. D. Mazurov (ed.), Kourovka Notebook: Unsolved Problems in Group Theory, 11th edn, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1990.
[27] Schocker, M., ‘The descent algebra of the symmetric group’, in: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, Fields Institute Communications, 40 (American Mathematical Society, Providence, RI, 2004), 145161.
[28] Schur, I., ‘Über die rationalen Darstellungen der allgemeinen linearen Gruppe, (1927)’, in: Gesammelte Abhandlungen, III (eds. Brauer, A. and Rohrbach, H.) (Springer, Berlin, 1973), 6885.
[29] Selick, P. and Wu, J., ‘Some calculations of Lie(n)max for low n ’, J. Pure Appl. Algebra 212(11) (2008), 25702580.
[30] Shmelkin, A. L., ‘Wreath products and varieties of groups’, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 149170 (in Russian).
[31] Stöhr, R., ‘On torsion in free central extensions of some torsion-free groups’, J. Pure Appl. Algebra 46 (1987), 249289.
[32] Thrall, R. M., ‘On symmetrized Kronecker powers and the structure of the free Lie ring’, Amer. J. Math. 64 (1942), 371388.
[33] Wever, F., ‘Über Invarianten in Lie’schen Ringen’, Math. Ann. 120 (1949), 563580.
[34] Witt, E., ‘Die Unterringe der freien Lieschen Ringe’, Math. Z. 64 (1956), 195216.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

L. G. KOVÁCS’ WORK ON LIE POWERS

  • MARIANNE JOHNSON (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed