Skip to main content Accessibility help

Infinitary lattice and Riesz properties of pseudoeffect algebras and po-groups

  • Anatolij Dvurečenskij (a1) and Thomas Vetterlein (a1)


Pseudoeffect (PE-) algebras generalize effect algebras by no longer being necessarily commutative. They are in certain cases representable as the unit interval of a unital po-group, for instance if they fulfil a certain Riesz property.

Several infinitary lattice properties and the countable Riesz interpolation property are studied for PE-algebras on the one hand and for po-groups on the other hand. We establish the exact relationships between the various conditions that are taken into account, and in particular, we examine how properties of a PE-algebra are related to the analogous properties of a representing po-group.



Hide All
[1]Ando, T., ‘Problem of infimum in the positive cone’, in: Geometric inequalities and applications (eds. Rassias, T. M. and Srivastava, H. M.) (Kluwer, Dordrecht, 1999) pp. 112.
[2]Birkhoff, G., Lattice theory, Colloquium Publications 25, 3rd Edition (Amer. Math. Soc., Providence, 1995).
[3]Dvurečenskij, A., ‘Pseudo-MV algebras are intervals in ℓ-groups’, J. Aust. Math. Soc. 72 (2002), 427445.
[4]Dvurečenskij, A. and Pulmannová, S., New trends in quantum structures (Kluwer, Dordrecht, 2000).
[5]Dvurečenskij, A. and Vetterlein, T., ‘Pseudeffect algebras. I. Basic properties’, Internat. J. Theoret. Phys. 40 (2001), 685701.
[6]Dvurečenskij, A. and Vetterlein, T., ‘Pseudeffect algebras. II. Group representations’, Internat. J. Theoret. Phys. 40 (2001), 703726.
[7]Dvurečenskij, A. and Vetterlein, T., ‘Congruences and states on pseudo-effect algebras’, Found. Phys. Letters 14 (2001), 425446.
[8]Dvurečenskij, A. and Vetterlein, T., ‘On pseudoeffect algebras which can be covered by pseudo MV-algebras’, Demonstratio Math. 36 (2003), 261282.
[9]Dvurečenskij, A. and Vetterlein, T., ‘Archimedeanness and the McNeille completion of pseudoeffect algebras and po-groups’, Algebra Universalis, to appear.
[10]Foulis, D. J. and Bennett, M. K., ‘Effect algebras and unsharp quantum logics’, Found. Phys. 24 (1994), 13251346.
[11]Fuchs, L., Partially ordered algebraic systems (Pergamon Press, Oxford, 1963).
[12]Fuchs, L., ‘Riesz groups’, Annali della Scuola Norm. Sup. Pisa, III. Ser. 19 (1965), 134.
[13]Georgescu, G. and Iorgulescu, A., ‘Pseudo-MV algebras’, Mult.-Valued Log. 6 (2001), 95135.
[14]Goodearl, K. R., Partially ordered abelian groups with interpolation, Mathematical Surveys and Monographs 20 (Amer. Math. Soc., Providence, 1986).
[15]Jakubik, J., ‘Conditionally orthogonally complete ℓ-groups’, Math. Nachr. 65 (1975), 153162.
[16]Jakubik, J., ‘On archimedean MV-algebras’, Czechoslovak Math. J. 48 (1998), 575582.
[17]Mundici, D., ‘Interpretation of AF C*-algebras in Lukasiewicz sentential calculus’, J. Funct. Anal. 65 (1986), 1563.
[18]Pedersen, G. K., Analysis now (Springer, New York, 1989).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed