Skip to main content Accessibility help
×
Home

A FUJITA-TYPE RESULT FOR A SEMILINEAR EQUATION IN HYPERBOLIC SPACE

  • HUI WU (a1)

Abstract

In this paper, we study the positive solutions for a semilinear equation in hyperbolic space. Using the heat semigroup and by constructing subsolutions and supersolutions, a Fujita-type result is established.

Copyright

References

Hide All
[1] Aronson, D. J. and Weinberger, H. F., ‘Multidimensional nonlinear diffusion arising in population genetics’, Adv. Math. 30 (1978), 3376.
[2] Bandle, C., Pozio, M. A. and Tesei, A., ‘The Fujita exponent for the Cauchy problem in the hyperbolic space’, J. Differential Equations 251 (2011), 21432163.
[3] Chen, S. H., ‘Global existence and nonexistence for some degenerate and quasilinear parabolic systems’, J. Differential Equations 245 (2008), 11121136.
[4] Davies, E. B., Heat Kernel and Spectral Theory, Cambridge Tracts in Mathematics, 92 (Cambridge University Press, Cambridge, 1989).
[5] Deng, K. and Levine, H. A., ‘The role of critical exponents in blow-up theorems: the sequel’, J. Math. Anal. Appl. 243 (2000), 85126.
[6] Fujita, H., ‘On the blowing up of solutions of the Cauchy problem for u t =𝛥 u + u 1+𝛼 ’, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109124.
[7] Kobayashi, K., Sirao, T. and Tanaka, H., ‘On the growing up problem for semilinear heat equations’, J. Math. Soc. Japan 29 (1977), 407424.
[8] Li, F. Sh., Zhao, Z. Q. and Chen, Y. F., ‘Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation’, Nonlinear Anal. Real World Appl. 12 (2011), 17591773.
[9] Mancini, G. and Sandeep, K., ‘On a semilinear elliptic equation in ℍ n ’, Ann. Sc. Norm. Super. Pisa Cl. Sci. 7(5) (2008), 635671.
[10] Meier, P., ‘On the critical exponent for reaction–diffusion equations’, Arch. Ration. Mech. Anal. 109 (1990), 6371.
[11] Qi, Y. W., ‘The critical exponents of parabolic equations and blow-up in ℝ n ’, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 123136.
[12] Quittner, P. and Souplet, Ph., Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts (Basler Lehrbücher Birkhäuser, Basel, 2007).
[13] Uda, Y., ‘The critical exponent for a weakly coupled system of the generalized Fujita type reaction–diffusion equations’, Z. angew. Math. Phys. 46(3) (1995), 366383.
[14] Wang, Z. Y. and Yin, J. X., ‘A note on semilinear heat equation in hyperbolic space’, J. Differential Equations 256 (2014), 11511156.
[15] Weissler, F. B., ‘Existence and nonexistence of global solutions for a semilinear heat equation’, Israel J. Math. 38 (1981), 2940.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

A FUJITA-TYPE RESULT FOR A SEMILINEAR EQUATION IN HYPERBOLIC SPACE

  • HUI WU (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed