Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-dfw9g Total loading time: 0.285 Render date: 2022-08-18T17:20:02.543Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Extremal characterizations of reflexive spaces

Published online by Cambridge University Press:  09 April 2009

Xianfu Wang
Affiliation:
Mathematics, The Irving K. Barber School of Arts and SciencesUBC Okanagan3333 University WayKelowna BC VIV 1V7CanadaShawn.Wang@ubc.ca
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Assume that a Banach space has a Fréchet differentiable and locally uniformly convex norm. We show that the reflexive property of the Banach space is not only sufficient, but also a necessary condition for the fulfillment of the proximal extremal principle in nonsmooth analysis.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Borwein, J. M. and Fitzpatrick, S., ‘Existence of nearest points in Banach spaces’, Canad. J. Math. 4 (1989), 702720.CrossRefGoogle Scholar
[2]Borwein, J. M. and Giles, J., ‘The proximal normal formula in Banach space’, Trans. Amer. Math. Soc. 302 (1987), 371381.CrossRefGoogle Scholar
[3]Borwein, J. M. and Strojwas, H. M., ‘Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory’, Canad. J. Math. 38 (1986), 431452; ‘Part II: Applications’, Canad. J. Math. 39 (1987), 428–472.CrossRefGoogle Scholar
[4]Borwein, J. M. and Zhu, Q. J., Techniques of variational analysis: an introduction (Springer, Berlin, 2005).Google Scholar
[5]Clarke, F. H., Ledyaev, Y., Stern, R. J. and Wolenski, P. R., Nonsmooth analysis and control theory. Graduate Texts in Mathematics 178 (Springer, New York, 1998).Google Scholar
[6]Fabian, M., ‘Subdifferentiability and trustworthiness in the light of the smooth variational principle of Borwein and Preiss’, Ada Univ. Carotin. Math. Phys. 30 (1989), 5156.Google Scholar
[7]Fabian, M. and Mordukhovich, B. S., ‘Nonsmooth characterizations of Asplund spaces and smooth variational principles’, Set-Valued Anal. 6 (1998), 381406.CrossRefGoogle Scholar
[8]Ioffe, A. D.. ‘Proximal analysis and approximate subdifferentials’, J. London Math. Soc. (2) 41 (1990), 175192.CrossRefGoogle Scholar
[9]Kruger, A. Y. and Mordukhovich, B. S., ‘Extremal points and the Euler equation in nonsmooth optimization’, Dolk. Akad. Nauk BSSR 24 (1980), 684687.Google Scholar
[10]Lau, K. S., ‘Almost Chebyshev subsets in reflexive Banach spaces’, Indiana Univ. Math. J. 27 (1978), 791795.CrossRefGoogle Scholar
[11]Loewen, P. D., ‘A mean value theorem for Frechet subgradients’, Nonlinear Anal. 23 (1994), 13651381.CrossRefGoogle Scholar
[12]Mordukhovich, B. S., Variational analysis and generalized differentiation, I: Basic Theory, II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330 and 331 (Springer, Berlin, 2005).Google Scholar
[13]Mordukhovich, B. S. and Shao, Y., ‘Extremal characterizations of Asplund spaces’, Proc. Amer. Math. Soc., 124 (1996), 197205.CrossRefGoogle Scholar
[14]Phelps, R. R., Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics 1364 (Springer, Berlin, 1993).Google Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Extremal characterizations of reflexive spaces
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Extremal characterizations of reflexive spaces
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Extremal characterizations of reflexive spaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *