Skip to main content Accessibility help
×
Home

CONTACT METRIC THREE-MANIFOLDS WITH CONSTANT SCALAR TORSION

  • T. KOUFOGIORGOS (a1) and C. TSICHLIAS (a2)

Abstract

In this paper we study three-dimensional contact metric manifolds satisfying $\Vert \unicode[STIX]{x1D70F}\Vert =\text{constant}$ . The local description, as well as several global results and new examples of such manifolds are given.

Copyright

Corresponding author

References

Hide All
[1] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edn, Progress in Mathematics, 203 (Birkhäuser, Boston, 2010).
[2] Blair, D. E., Koufogiorgos, T. and Papantoniou, B., ‘Contact metric manifolds satisfying a nullity condition’, Israel J. Math. 91 (1995), 189214.
[3] Calvaruso, G., Perrone, D. and Vanhecke, L., ‘Homogeneity on three-dimensional contact metric manifolds’, Israel J. Math. 114 (1999), 301321.
[4] Chern, S. S. and Hamilton, R. S., On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds, Lecture Notes in Mathematics, 1111 (Springer, Berlin, 1985), 279305.
[5] Ghosh, A. and Sharma, R., ‘A generalization of K-contact and (𝜅, 𝜇)-contact manifolds’, J. Geom. 103(3) (2012), 431443.
[6] Gouli-Andreou, F. and Moutafi, E., ‘Two classes of pseudosymmetric contact metric 3-manifolds’, Pacific J. Math. 239(1) (2009), 1737.
[7] Gouli-Andreou, F. and Moutafi, E., ‘Three classes of pseudosymmetric contact metric 3-manifolds’, Pacific J. Math. 245(1) (2010), 5777.
[8] Gouli-Andreou, F. and Xenos, P., ‘On 3-dimensional contact metric manifolds with 𝛻𝜉𝜏 = 0’, J. Geom. 62 (1998), 154165.
[9] Koufogiorgos, T., Markellos, M. and Tsichlias, C., ‘Tangent sphere bundles with constant trace of the Jacobi operator’, Beitr. Algebra Geom. 53(2) (2012), 551568.
[10] Koufogiorgos, T. and Tsichlias, C., ‘On the existence of a new class of contact metric manifolds’, Canad. Math. Bull. 43 (2000), 440447.
[11] Koufogiorgos, T. and Tsichlias, C., ‘Three dimensional contact metric manifolds with vanishing Jacobi operator’, Beitr. Algebra Geom. 50(2) (2009), 563573.
[12] Perrone, D., ‘Homogeneous contact Riemannian three-manifolds’, Illinois J. Math. 42(2) (1998), 243256.
[13] Perrone, D., ‘Contact metric manifolds whose characteristic vector field is a harmonic vector field’, Differential Geom. Appl. 20(3) (2004), 367378.
[14] Tanno, S., ‘The topology of contact Riemannian manifolds’, Illinois J. Math. 12 (1968), 700717.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

CONTACT METRIC THREE-MANIFOLDS WITH CONSTANT SCALAR TORSION

  • T. KOUFOGIORGOS (a1) and C. TSICHLIAS (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed