Skip to main content Accessibility help
×
Home

CHEBYSHEV SETS

Abstract

A Chebyshev set is a subset of a normed linear space that admits unique best approximations. In the first part of this paper we present some basic results concerning Chebyshev sets. In particular, we investigate properties of the metric projection map, sufficient conditions for a subset of a normed linear space to be a Chebyshev set, and sufficient conditions for a Chebyshev set to be convex. In the second half of the paper we present a construction of a nonconvex Chebyshev subset of an inner product space.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      CHEBYSHEV SETS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      CHEBYSHEV SETS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      CHEBYSHEV SETS
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1]Amir, D. and Deutsch, F., ‘Suns, moons and quasi-polyhedra’, J. Approx. Theory 6 (1972), 176201.
[2]Aronszajn, N., Introduction to the Theory of Hilbert Spaces (Research Foundation of Oklahoma A and M College, Stillwater, OK, 1950).
[3]Ascoli, G., ‘Sugli spazi lineari metrici e le loro varietá lineari’, Ann. Mat. Pura Appl. (4) 10 (1932), 3881; 203–232.
[4]Asplund, E., ‘Čebyšev sets in Hilbert spaces’, Trans. Amer. Math. Soc. 144 (1969), 235240.
[5]Assadi, A., Haghshenas, H. and Narang, T. D., ‘A look at proximinal and Chebyshev sets in Banach spaces’, Matematiche (Catania) 69 (2014), 7187.
[6]Balaganskii, V. S., ‘Approximative properties of sets in Hilbert space’, Mat. Zametki 31 (1982), 397404.
[7]Balaganskiĭ, V. S. and Vlasov, L. P., ‘The problem of the convexity of Chebyshev sets’, Russian Math. Surveys 51(6) (1996), 11271190.
[8]Banach, S., Théorie des opérations linéaires (Monografje Matematyczne, Warsaw, 1932).
[9]Baronti, M. and Papini, P. L., ‘Remotal sets revisted’, Taiwanese J. Math. 5 (2001), 367373.
[10]Blatter, J., ‘Weiteste Punkte und nächste Punkte’, Rev. Roumaine Math. Pures Appl. 14 (1969), 615621.
[11]Borwein, J. M., ‘Proximality and Chebyshev sets’, Optim. Lett. 1 (2007), 2132.
[12]Borwein, J. M. and Fitzpatrick, S., ‘Existence of nearest points in Banach spaces’, Canad. J. Math. 41 (1989), 702720.
[13]Borwein, J. M. and Preiss, D., ‘A smooth variational principle with applications to subdifferentiability and differentiability of convex functions’, Trans. Amer. Math. Soc. 303 (1987), 517527.
[14]Bourbaki, N., ‘Sur les espaces de Banach’, C. R. Acad. Sci. Paris 206 (1938), 17011704.
[15]Bourgain, J., ‘ c 0has no equivalent strictly convex norm’, Proc. Amer. Math. Soc. 78 (1980), 225226.
[16]Brøndsted, A. and Rockafellar, R. T., ‘On the subdifferentiability of convex functions’, Proc. Amer. Math. Soc. 16 (1965), 605611.
[17]Brouwer, L., ‘Über Abbildung von Mannigfaltigkeiten’, Math. Ann. 71 (1911), 97115.
[18]Brown, A. L., ‘A rotund and reflexive space having a subspace of codimension two with a discontinuous metric projection’, Michigan Math. J. 21 (1974), 145151.
[19]Bunt, L., ‘Bijdrage tot de theorie der konvekse puntverzamelingen’, Thesis, University of Groningen, Amsterdam, 1934.
[20]Busemann, H., ‘Note on a theorem on convex sets’, Mat. Tidsskrift B (1947), 3234.
[21]Busemann, H., The Geometry of Geodesics (Academic Press, New York, 1955).
[22]Clarkson, J. A., ‘Uniformly convex spaces’, Trans. Amer. Math. Soc. 40(3) (1936), 396414.
[23]Deutsch, F., ‘Existence of best approximations’, J. Approx. Theory 28 (1980), 132154.
[24]Deutsch, F., ‘The convexity of Chebyshev sets in Hilbert space’, in: Topic in Polynomials of One and Several Variables and Their Applications (World Scientific, River Edge, NJ, 1993), 143150.
[25]Deutsch, F., Best Approximation in Inner Product Spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 7 (Springer-Verlag, New York, 2001).
[26]Diestel, J., Sequences and Series in Banach Spaces (Springer, New York, 1984).
[27]Duda, J., ‘On the size of the set of points where the metric projection is discontinuous’, J. Nonlinear Convex Anal. 7 (2006), 6770.
[28]Dunford, N. and Schwartz, J. T., Linear Operators I. General Theory (Interscience Publishers, London, 1958).
[29]Dunford, N. and Schwartz, J. T., Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Interscience Publishers, New York, 1963).
[30]Eberlein, W. F., ‘Weak compactness in Banach spaces I’, Proc. Nat. Acad. Sci. USA 33 (1947), 5153.
[31]Efimov, N. V. and Stečkin, S. B., ‘Some properties of Čebyšev sets’, Dokl. Akad. Nauk SSSR 118 (1958), 1719; (in Russian).
[32]Efinov, N. V. and Stečkin, S. B., ‘Čebyšev sets in Banach space’, Dokl. Akad. Nauk SSSR 121 (1958), 582585; (in Russian).
[33]Efimov, N. V. and Stečkin, S. B., ‘Support properties of sets in Banach spaces and Čebyšev sets’, Dokl. Akad. Nauk SSSR 127 (1959), 254257.
[34]Efimov, N. V. and Stečkin, S. B., ‘Approximative compactness and Chebyshev sets’, Dokl. Akad. Nauk SSSR 140 (1961), 522524; (in Russian).
[35]Ekeland, I., ‘Nonconvex minimization problems’, Bull. Amer. Math. Soc. (N.S.) 1(3) (1979), 443474.
[36]Fabian, M., Habala, P., Hájek, P., Montesinos, V. and Zizler, V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, New York, 2011).
[37]Fitzpatrick, S., ‘Metric projections and the differentiability of distance functions’, Bull. Aust. Math. Soc. 22 (1980), 291312.
[38]Fréchet, M., ‘Sur les opérations linéaires III’, Trans. Amer. Math. Soc. 8 (1907), 433446.
[39]Friedrichs, K. O., ‘On Clarkson’s inequalities’, Comm. Pure Appl. Math. 23 (1970), 603607.
[40]Giles, J. R., Convex Analysis with Application in the Differentiation of Convex Functions, Research Notes in Mathematics, 58 (Pitman (Advanced Publishing Program), Boston, 1982).
[41]Giles, J. R., ‘Differentiability of distance functions and a proximinal property inducing convexity’, Proc. Amer. Math. Soc. 104 (1988), 458464.
[42]Hu, Z., Moors, W. B. and Smith, M. A., ‘On a Banach space without a weak mid-point locally uniformly rotund norm’, Bull. Aust. Math. Soc. 56 (1997), 193196.
[43]James, R. C., ‘Weakly compact sets’, Trans. Amer. Math. Soc. 113 (1964), 129140.
[44]Jessen, B., ‘To sætninger om konvekse punktmængder’, Mat. Tidsskrift B (1940), 6670.
[45]Jiang, M., ‘On Johnson’s example of a nonconvex Chebyshev set’, J. Approx. Theory 74(2) (1993), 152158.
[46]Johnson, G. G., ‘A nonconvex set which has the unique nearest point property’, J. Approx. Theory 51(4) (1987), 289332.
[47]Kadec, M. I., ‘On strong and weak convergence’, Dokl. Akad. Nauk SSSR 122 (1958), 1216.
[48]Klee, V., ‘Convex bodies and periodic homeomorphisms in Hilbert spaces’, Trans. Amer. Math. Soc. 74 (1953), 1043.
[49]Klee, V. L., ‘Mappings into normed linear spaces’, Fund. Math. 49 (1960/61), 2534.
[50]Klee, V. L., ‘Convexity of Chebyshev sets’, Math. Ann. 142 (1961), 292304.
[51]Klee, V., ‘Remarks on nearest points in normed linear spaces’, in: Proc. Colloquium on Convexity Copenhagen, 1965, Kobenhavns Univ. Mat. Inst., Copenhagen (1967), 168176.
[52]Kritikos, M., ‘Sur quelques propriétés des ensembles convexes’, Bull. Math. Soc. Romnine Sci. 40 (1938), 8792.
[53]Lindenstrauss, J., Preiss, D. and Tiser, J., Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces, Annals of Mathematics Studies, 179 (Princeton University Press, Princeton, NJ, 2012).
[54]Mazur, S., ‘Über die kleinste konvexe Menge, die eine gegebene kompakte Menge enthält’, Stud. Math. 2 (1930), 79.
[55]Moors, W. B., ‘An elementary proof of James’ characterisation of weak compactness’, Bull. Aust. Math. Soc. 84 (2011), 98102.
[56]Moors, W. B. and Sciffer, S. D., ‘Sigma-fragmentable spaces that are not a countable union of fragmentable spaces’, Topol. Appl. 119 (2002), 279286.
[57]Motzkin, T., ‘Sur quelques propriétés caractéristiques des ensembles convexes’, Rend. Acad. dei Lincei (Roma) 21 (1935), 562567.
[58]Motzkin, T., ‘Sur quelques propriétés caractéristiques des ensembles bornés non convexes’, Rend. Acad. dei Lincei (Roma) 21(series 6) (1935), 773779.
[59]Narang, T. D., ‘Convexity of Chebyshev sets’, Nieuw Arch. Wiskd. (5) 25 (1977), 377402.
[60]Narang, T. D., ‘Uniquely remotal sets are singletons’, Nieuw Arch. Wiskd. (5) 9(4) (1991), 112.
[61]Phelps, R. R., ‘Convex sets and nearest points’, Proc. Amer. Math. Soc. 8 (1957), 790797.
[62]Phelps, R. R., Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, 1364 (Springer, Berlin, 1993).
[63]Preiss, D., ‘Differentiability of Lipschitz functions on Banach spaces’, J. Funct. Anal. 91 (1990), 312345.
[64]Rademacher, H., ‘Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale’, Math. Ann. 79 (1919), 340359.
[65]Radon, J., ‘Theorie und Anwendugen der absolut additiven Mengenfunctionen’, Sitz. Akad. Wiss. Wien. 122 (1913), 12951438.
[66]Rao, M. and Stetkær, H., Complex Analysis. An Invitation. A Concise Introduction to Complex Function Theory (World Scientific, Teaneck, NJ, 1991).
[67]Riesz, F., ‘Sur une espèce de géométrie analytique des systémes de fonctions sommables’, C. R. Acad. Sci. Paris 144 (1907), 14091411.
[68]Riesz, F., ‘Untersuchungen über Systeme integrierbarer Funktionen’, Math. Ann. 69 (1910), 449497.
[69]Riesz, F., ‘Sur la convergence en moyenne I’, Acta Sci. Math. 4 (1928/29), 5864.
[70]Riesz, F., ‘Sur la convergence en moyenne II’, Acta Sci. Math. 4 (1928/29), 182185.
[71]Revalski, J. P. and Zhivkov, N. V., ‘Best approximation problems in compactly uniformly rotund spaces’, J. Convex Anal. 19 (2012), 11531166.
[72]Rockafellar, R. T., ‘On the virtual convexity of the domain and range of a nonlinear maximal monotone operator’, Math. Ann. 185 (1970), 8190.
[73]Rockafellar, R. T., ‘On the maximal monotonicity of subdifferential mappings’, Pacific J. Math. 33 (1970), 209216.
[74]Royden, H. L., Real Analysis, 3rd edn (Macmillan, New York, 1988).
[75]Rudin, W., Functional Analysis, 2nd edn, International Series in Pure and Applied Mathematics (McGraw-Hill, New York, 1991).
[76]Raymond, J. S., ‘Weak compactness and variational characterisation of the convexity’, Mediterr. J. Math. 10 (2013), 927940.
[77]Schauder, J., ‘Der Fixpunktsatz in Funktionalräumen’, Stud. Math. 2(1) (1930), 171180.
[78]Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces (Springer, New York, 1970).
[79]Singer, I., The Theory of Best Approximation in Functional Analysis, Conference Board of the Mathematical Sciences Regional Series in Applied Mathematics, 13 (Society for Industrial and Applied Mathematics, Philadelphia, 1974).
[80]Šmulian, V. L., ‘Sur la dérivabilité de la norme dans l’espace de Banach’, C. R. Acad. Sci. URSS (Dokl.) N.S. 27 (1940), 643648.
[81]Stečkin, S. B., ‘Approximation properties of sets in normed linear spaces’, Rev. Math. Pures Appl. 8 (1963), 518.
[82]Troyanski, S., ‘On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces’, Stud. Math. 37 (1971), 173180.
[83]Valentine, F. A., Convex Sets, McGraw-Hill Series in Higher Mathematics (McGraw-Hill, New York–Toronto–London, 1964).
[84]Vlasov, L. P., ‘Chebyshev sets in Banach spaces’, Dokl. Akad. Nauk SSSR 141 (1961), 1920.
[85]Vlasov, L. P., ‘On Čebyšev sets’, Dokl. Akad. Nauk SSSR 173 (1967), 491494.
[86]Vlasov, L. P., ‘Almost convex and Chebyshev sets’, Math. Notes Acad. Sci. USSR 8 (1970), 776779.
[87]Vlasov, L. P., ‘Approximative properties of sets in normed linear spaces’, Russian Math. Surveys 28 (1973), 195.
[88]Westphal, U. and Frerking, J., ‘On a property of metric projections onto closed subsets of Hilbert spaces’, Proc. Amer. Math. Soc. 105 (1989), 644651.
[89]Wu, Z., ‘A Chebyshev set and its distance function’, J. Approx. Theory 119 (2002), 181192.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

CHEBYSHEV SETS

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.