Skip to main content Accessibility help
×
Home

CHARACTERIZATIONS OF BMO AND LIPSCHITZ SPACES IN TERMS OF $A_{P,Q}$ WEIGHTS AND THEIR APPLICATIONS

  • DINGHUAI WANG (a1), JIANG ZHOU (a2) and ZHIDONG TENG (a3)

Abstract

Let $0<\unicode[STIX]{x1D6FC}<n,1\leq p<q<\infty$ with $1/p-1/q=\unicode[STIX]{x1D6FC}/n$ , $\unicode[STIX]{x1D714}\in A_{p,q}$ , $\unicode[STIX]{x1D708}\in A_{\infty }$ and let $f$ be a locally integrable function. In this paper, it is proved that $f$ is in bounded mean oscillation $\mathit{BMO}$ space if and only if

$$\begin{eqnarray}\sup _{B}\frac{|B|^{\unicode[STIX]{x1D6FC}/n}}{\unicode[STIX]{x1D714}^{p}(B)^{1/p}}\bigg(\int _{B}|f(x)-f_{\unicode[STIX]{x1D708},B}|^{q}\unicode[STIX]{x1D714}(x)^{q}\,dx\bigg)^{1/q}<\infty ,\end{eqnarray}$$
where $\unicode[STIX]{x1D714}^{p}(B)=\int _{B}\unicode[STIX]{x1D714}(x)^{p}\,dx$ and $f_{\unicode[STIX]{x1D708},B}=(1/\unicode[STIX]{x1D708}(B))\int _{B}f(y)\unicode[STIX]{x1D708}(y)\,dy$ . We also show that $f$ belongs to Lipschitz space $Lip_{\unicode[STIX]{x1D6FC}}$ if and only if
$$\begin{eqnarray}\sup _{B}\frac{1}{\unicode[STIX]{x1D714}^{p}(B)^{1/p}}\bigg(\int _{B}|f(x)-f_{\unicode[STIX]{x1D708},B}|^{q}\unicode[STIX]{x1D714}(x)^{q}\,dx\bigg)^{1/q}<\infty .\end{eqnarray}$$
As applications, we characterize these spaces by the boundedness of commutators of some operators on weighted Lebesgue spaces.

Copyright

Corresponding author

References

Hide All
[1] Bloom, S., ‘A commutator theorem and weighted BMO’, Trans. Amer. Math. Soc. 292 (1985), 103122.
[2] Chanillo, S., ‘A note on commutators’, Indiana Univ. Math. J. 31 (1982), 716.
[3] Coifman, R., Rochberg, R. and Weiss, G., ‘Factorization theorems for Hardy spaces in several variables’, Ann. of Math. (2) 103 (1976), 611635.
[4] Cruz-Uribe, D. and Fiorenza, A., ‘Endpoint estimates and weighted norm inequalities for commutators of fractional integrals’, Publ. Math. 47 (2003), 103131.
[5] Devore, R. A. and Sharpley, R. C., Maximal Functions Measuring Smoothness, Memoirs of the American Mathematical Society, 47 (American Mathematical Society, 1984).
[6] Ding, Y., ‘A characterization of BMO via commutators for some operators’, Northeast. Math. J. 13 (1997), 422432.
[7] Grafakos, L., Classical and Modern Fourier Analysis (Springer, New York, 2004).
[8] Hart, J. and Torres, R. H., ‘John–Nirenberg inequalities and weight invariant BMO spaces’, J. Geom. Anal. 1 (2018), 141.
[9] Ho, K.-P., ‘Characterization of BMO by a p weights and p-convexity’, Hiroshima Math. J. 41 (2011), 153165.
[10] Janson, S., Taibleson, M. and Weiss, G., ‘Elementary characterization of the Morrey–Campanato spaces’, Lect. Notes Math. 992 (1983), 101114.
[11] John, F. and Nirenberg, L., ‘On functions of bounded mean oscillation’, Comm. Pure Appl. Math. 2 (1961), 415426.
[12] Muckenhoupt, B., ‘Weighted norm inequalities for the Hardy maximal function’, Trans. Amer. Math. Soc. 165 (1972), 207226.
[13] Muckenhoupt, B. and Wheeden, R., ‘Weighted bounded mean oscillation and the Hilbert transform’, Studia Math. 54 (1975), 221237.
[14] Muckenhoupt, B. and Wheeden, R., ‘Weighted norm inequalities for fractional integrals’, Trans. Amer. Math. Soc. 192 (1974), 261274.
[15] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton, NJ, 1993).
[16] Wang, D. H., Zhou, J. and Teng, Z. D., ‘A note on Campanato spaces and their applications’, Math. Notes 103 (2018), 483489.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed