Skip to main content Accessibility help


  • TOMASZ SCHOEN (a1) and ILYA D. SHKREDOV (a2) (a3) (a4)


We prove some new bounds for the size of the maximal dissociated subset of structured (having small sumset, large energy and so on) subsets of an abelian group.


Corresponding author


Hide All
[1]Bateman, M. and Katz, N., ‘Structure in additively nonsmoothing sets’, Preprint, 2011, arXiv:1104.2862v1.
[2]Bateman, M. and Katz, N., ‘New bounds on cap sets’, J. Amer. Math. Soc. 25(2) (2012), 585613.
[3]Bourgain, J., ‘On arithmetic progressions in sums of sets of integers’, in: A Tribute of Paul Erdös (Cambridge University Press, Cambridge, 1990), 105109.
[4]Bourgain, J., ‘On triples in arithmetic progression’, Geom. Funct. Anal. 9 (1999), 968984.
[5]Bourgain, J., ‘Roth’s theorem on progressions revisited’, J. Anal. Math. 104 (2008), 155206.
[6]Bukh, B., ‘Sums of dilates’, Combin. Probab. Comput. 17(5) (2008), 627639.
[7]Candela, P. and Helfgott, H. A., ‘On the dimension of additive sets’, Acta Arith. 167(1) (2015), 91100.
[8]Chang, M.-C., ‘A polynomial bound in Freiman’s theorem’, Duke Math. J. 113(3) (2002), 399419.
[9]Green, B. and Tao, T., ‘An equivalence between inverse sumset theorems and inverse conjectures for the U 3 -norms’, Math. Proc. Cambridge Philos. Soc. 149(1) (2010), 119.
[10]Lev, V. F. and Yuster, R., ‘On the size of dissociated bases’, Electron. J. Combin. 18(1) (2011), #P117.
[11]Łuczak, T. and Schoen, T., ‘On a problem of Konyagin’, Acta Arith. 134(2) (2008), 101109.
[12]Rudin, W., Fourier Analysis on Groups (John Wiley & Sons Inc., New York, 1990), (reprint of the 1962 original).
[13]Ruzsa, I. Z., ‘Solving linear equations in sets of integers. I’, Acta Arith. 65 (1993), 259282.
[14]Ruzsa, I. Z., ‘Cardinality questions about sumsets’, in: Additive Combinatorics, CRM Proceedings & Lecture Notes, 43 (American Mathematical Society, Providence, RI, 2007), 195205.
[15]Ruzsa, I. Z., ‘Sumsets and structure’, in: Combinatorial Number Theory and Additive Group Theory (Birkhäuser, Basel, 2009), 87210.
[16]Sanders, T., ‘On a theorem of Shkredov’, Online J. Anal. Combin. (5) (2010), Art. 5, 4 pp.
[17]Sanders, T., ‘On Roth’s theorem on progressions’, Ann. of Math. (2) 174 (2011), 619636.
[18]Sanders, T., ‘On the Bogolubov–Ruzsa lemma’, Anal. PDE 5 (2012), 627655.
[19]Sanders, T., ‘On certain other sets of integers’, J. Anal. Math. 116 (2012), 5382.
[20]Sanders, T., ‘Structure in sets with logarithmic doubling’, Canad. Math. Bull. 56(2) (2013), 412423.
[21]Sanders, T., ‘The structure theory of set addition revisited’, Bull. Amer. Math. Soc. (N.S.) 50(1) (2013), 93127.
[22]Schoen, T., ‘Near optimal bounds in Freiman’s theorem’, Duke Math. J. 158 (2011), 112.
[23]Schoen, T. and Shkredov, I. D., ‘Higher moments of convolutions’, J. Number Theory 133 (2013), 16931737.
[24]Shkredov, I. D., ‘On sets with small doubling’, Mat. Zametki 84(6) (2008), 927947.
[25]Shkredov, I. D., ‘Some new results on higher energies’, Trans. Moscow Math. Soc. 74(1) (2013), 3573.
[26]Shkredov, I. D. and V’ugin, I. V., ‘On additive shifts of multiplicative subgroups’, Mat. Sb. 203(6) (2012), 81100.
[27]Shkredov, I. D. and Yekhanin, S., ‘Sets with large additive energy and symmetric sets’, J. Combin. Theory Ser. A 118 (2011), 10861093.
[28]Tao, T. and Vu, V., Additive Combinatorics (Cambridge University Press, Cambridge, 2006).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed