Skip to main content Accessibility help
×
Home

What is an inference rule?

  • Ronald Fagin (a1), Joseph Y. Halpern (a2) and Moshe Y. Vardi (a3)

Abstract

What is an inference rule? This question does not have a unique answer. One usually finds two distinct standard answers in the literature; validity inference (σ ⊦vφ for every substitution τ, the validity of τ[σ] entails the validity of τ[φ]), and truth inference (σ⊦l φ if for every substitution τ, the truth of τ[σ] entails the truth of τ[φ]). In this paper we introduce a general semantic framework that allows us to investigate the notion of inference more carefully. Validity inference and truth inference are in some sense the extremal points in our framework. We investigate the relationship between various types of inference in our general framework, and consider the complexity of deciding if an inference rule is sound, in the context of a number of logics of interest: classical propositional logic, a nonstandard propositional logic, various propositional modal logics, and first-order logic.

Copyright

References

Hide All
[AB75]Anderson, A. and Belnap, N. D., Entailment: the logic of relevance and necessity, Princeton University Press, Princeton, New Jersey, 1975.
[Avr87]Avron, A., Simple consequence relations, Information and Computation, vol. 92 (1991), pp. 105139.
[Ben79]van Benthem, J. F. A. K., Syntactic aspects of modal incompleteness theorems, Theoria, vol. 45 (1979), pp. 6377.
[Che80]Chellas, B. F., Modal logic, Cambridge University Press, Cambridge, 1980.
[Chu56]Church, A., Introduction to mathematical logic. Vol. I, Princeton University Press, Princeton, New Jersey, 1956.
[Coo71]Cook, S. A., The complexity of theorem proving procedures, Proceedings of the third ACM symposium on theory of computing, ACM, New York, 1971, pp. 151158.
[CR79]Cook, S. A. and Reckhow, R. A., The relative efficiency of propositional proof systems, this Journal, vol. 44 (1979), pp. 3650.
[Dun86]Dunn, J. M., Relevance logic and entailment. Handbook of philosophical logic, Vol. 111 (Gabbay, D. and Guenthner, F., editors), Reidel, Dordrecht, 1986, pp. 117224.
[Ehr61]Ehrenfeucht, A., An application of games to the completeness problem for formalized theories, Fundamenta Mathematicae, vol. 49 (1961), pp. 129141.
[End72]Enderton, H. B., A mathematical introduction to logic, Academic Press, New York, 1972.
[Fag90]Fagin, R., Finite-model theory—a personal perspective, ICDT '90 (Proceedings of the 1990 international conference on database theory; Abiteboul, S. and Kanellakis, P., editors), Lecture Notes in Computer Science, vol. 470, Springer-Verlag, Berlin, 1990, pp. 324. Theoretical Computer Science (to appear).
[FHV90]Fagin, R., Halpern, J. Y., and Vardi, M. Y., A nonstandard approach to the logical omniscience problem, Theoretical aspects of reasoning about knowledge (proceedings of the third conference, Pacific Grove, California, 1990; Parikh, R., editor), Morgan Kaufmann, San Mateo, California, 1990, pp. 4155.
[FL79]Fischer, M. J. and Ladner, R. E., Propositional dynamic logic of regular programs, Journal of Computer and System Sciences, vol. 18 (1979), pp. 194211.
[Fra54]Fraïssé, R., Sur quelques classifications des systèmes de relations, Publications Scientifiques de l'Université d'Alger, vol. 1 (1954), pp. 35182.
[Fre79]Frege, G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle, 1879; English translation, From Frege to Gödel; a source book in mathematical logic (van Heijenoort, J., editor), Harvard University Press, Cambridge, Massachusetts, 1967, pp. 1–82.
[Fri75]Friedman, H., One hundred and two problems in mathematical logic, this Journal, vol. 40 (1975), pp. 113129.
[Gab76]Gabbay, D., Investigations in modal and tense logics, Reidel, Dordrecht, 1976.
[Gab81]Gabbay, D., Semantical investigations in Heyting's intuitionistic logic, Reidel, Dordrecht, 1981.
[GJ79]Garey, M. and Johnson, D. S., Computers and intractibility: a guide to the theory of NP-completeness, Freeman, San Francisco, California, 1979.
[GP89]Goranko, V. and Passy, S., Using the universal modality: profits and questions, unpublished manuscript, 1989.
[Hac79]Hacking, I., What is logic? Journal of Philosophy, vol. 76 (1979), pp. 285319.
[Hal87]Halpern, J. Y., Using reasoning about knowledge to analyze distributed systems, Annual Review of Computer Science, vol. 2 (1987), pp. 3768.
[HC78]Hughes, G. E. and Cresswell, M. J., An introduction to modal logic, Methuen, London, 1978.
[HC84]Hughes, G. E. and Cresswell, M. J., A companion to modal logic, Methuen, London, 1984.
[HU79]Hopcroft, J. E. and Ullman, J. D., Introduction to automata theory, languages and computation, Addison-Wesley, Reading, Massachusetts, 1979.
[Hum86]Humberstone, I. L., A more discriminating approach to modal logic, this Journal, vol. 51 (1986), pp. 503504 (abstract only). There is also an expanded, but unpublished, manuscript.
[Kap87]Kapron, B., Modal sequents and definability, this Journal, vol. 52 (1987), pp. 756762.
[Lad77]Ladner, R. E., The computational complexity of provability in systems of modal propositional logic, SIAM Journal on Computing, vol. 6 (1977), pp. 467480.
[LL59]Lewis, C. I. and Langford, C. H., Symbolic logic, 2nd ed., Dover, New York, 1959.
[Min76]Mints, G., The derivability of admissible rules, Journal of Soviet Mathematics, vol. 6 (1976), pp. 417421.
[MSM81]Meyer, A. R., Streett, R. S., and Mirkowska, G., The deducibility problem in propositional dynamic logic, Automata, languages and programming, proceedings, Akko, 1979 (Engeler, E., editor), Lecture Notes in Computer Science, vol. 125, Springer-Verlag, Berlin, 1981, pp. 238248.
[Pra79]Pratt, V. R., Models of program logics, Proceedings of the 20th IEEE symposium on foundations of computer science, IEEE Computer Society Press, Washington, D. C., 1979, pp. 115122.
[PY82]Papadimitriou, C. H. and Yannakakis, M., The complexity of facets (and some facets of complexity), Journal of Computer and System Sciences, vol. 28 (1982), pp. 244259.
[Qui50]Quine, W. V. O., Methods of logic, Holt, New York, 1950.
[Rog67]Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.
[RR72]Routley, R. and Routley, V., Semantics of first degree entailment, Noûs, vol. 6 (1972), pp. 335359.
[Ryb87a]Rybakov, V. V., Bases of admissible rules of the modal system Grz and of intuitionistic logic, Mathematics of the USSR Sbornik, vol. 56 (1987), pp. 311331.
[Ryb87b]Rybakov, V. V., Decidability of admissibility in the modal system Grz and in intuitionistic logic, Mathematics of the USSR Izvestiya, vol. 28 (1987), pp. 589608.
[Ryb89]Rybakov, V. V., Problems of admissibility and substitution, logical equations and restricted theories of free algebras, Logic, methodology and philosophy of science. VIII (Fenstad, J. E.et al., editors), North-Holland, Amsterdam, 1989, pp. 121139.
[Ryb90a]Rybakov, V. V., Logical equations and admissible rules of inference with parameters in modal provability logics, Studia Logica, vol. 49 (1990), pp. 215239.
[Ryb90b]Rybakov, V. V., Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus, Annals of Pure and Applied Logic, vol. 50 (1990), pp. 71106.
[Sav70]Savitch, W. J., Relationships between nondeterministic and deterministic tape complexities, Journal of Computer and System Sciences, vol. 4 (1970), pp. 177192.
[St087]Stockmeyer, L. J., Classifying the computational complexity of problems, this Journal, vol. 52 (1987), pp. 143.
[Th075a]Thomason, S., The logic consequence relation of propositional tense logic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 2940.
[Tho75b]Thomason, S., Reduction of second-order logic to modal logic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 107114.
[Tsi77]Tsitkin, A. I., On admissible rules of intuitionistic propositional calculus, Matematicheskit Sbornik, vol. 102 (1977), pp. 314323; English translation, Mathematics of the USSR—Sbornik, vol. 31 (1977), pp. 279–288.
[vN27]von Neumann, J., Zur Hilbertschen beweistheorie, Mathematische Zeitschrift, vol. 26 (1927), pp. 146.

Related content

Powered by UNSILO

What is an inference rule?

  • Ronald Fagin (a1), Joseph Y. Halpern (a2) and Moshe Y. Vardi (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.