Skip to main content Accessibility help
×
Home

Von Mises' definition of random sequences reconsidered

  • Michiel van Lambalgen (a1)

Abstract

We review briefly the attempts to define random sequences (§0). These attempts suggest two theorems: one concerning the number of subsequence selection procedures that transform a random sequence into a random sequence (§§1–3 and 5); the other concerning the relationship between definitions of randomness based on subsequence selection and those based on statistical tests (§4).

Copyright

Corresponding author

Department of Mathematics, University of Amsterdam, Amsterdam, The, Netherlands

References

Hide All
Alekseev, V. M. and Yakobson, M. V. [1], Symbolic dynamics and hyperbolic dynamical systems, Physics Reports, vol. 75 (1981), pp. 287325.
Bishop, E. and Cheng, H. [1], Constructive measure theory, Memoirs of the American Mathematical Society, no. 116 (1972).
Brudno, A. [1], Entropy and the complexity of the trajectories of a dynamical system, Transactions of the Moscow Mathematical Society, 1983, no. 2 (44), pp. 127151.
Chaitin, G. J. [1], A theory of program size formally identical to information theory, Journal of the Association for Computing Machinery, vol. 22 (1975), pp. 329340.
Chaitin, G. J. [2], Algorithmic information theory, IBM Journal of Research and Development, vol. 21 (1977), pp. 3503509.
Church, A. [1], On the concept of a random sequence, Bulletin of the American Mathematical Society, vol. 46(1940), pp. 130135.
Dies, J.-E. [1], Information et complexité, Annales de l'Institut Henri Poincaré, Section B: Calcul des Probabilitiés et Statistique, Nouvelle Série, vol. 12 (1976), pp. 365390; vol. 14 (1978), pp. 113–118.
Feller, W. [1], Introduction to probability theory and its applications, Vol. I, Wiley, New York, 1968.
Feller, W. [2], Introduction to probability theory and its applications, Vol. II, Wiley, New York, 1971.
Ford, J. [1], How random is a coin toss? Physics Today, vol. 36 (1983), no. 4 (04), pp. 4047.
Gacs, P. [1], On the relation between descriptional complexity and algorithmic probability, Theoretical Computer Science, vol. 22 (1983), pp. 7193.
Gaifman, H. and Snir, M. [1], Probabilities over rich languages, randomness and testing, this Journal, vol. 47(1982), pp. 495548.
Kakutani, S. [1], On the equivalence of infinite product measures, Annals of Mathematics, ser. 2, vol. 49 (1948), pp. 214224.
Kamae, T. [1], Subsequences of normal sequences, Israel Journal of Mathematics, vol. 16 (1973), pp. 121149.
Kamke, E. [1], Über neuere Begründungen der Wahrscheinlichkeitsrechnung, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 42 (1932), pp. 1427.
Kechris, A. [1], Measure and category in effective descriptive set theory, Annals of Mathematical Logic, vol. 5(1973), pp. 337384.
Kolmogorov, A. N. [1], On tables of random numbers, Sankhyā, Series A, vol. 25 (1963), pp. 369376.
Kolmogorov, A. N. [2], Combinatorial foundations of information theory and the calculus of probabilities, Russian Mathematical Surveys, vol. 38 (1983), no. 4, pp. 2940.
Levin, L. A. [1], On the notion of a random sequence, Soviet Mathematics Doklady, vol. 14 (1973), pp. 14141416.
Levin, L. A. [2], Various measures of complexity for finite objects, Soviet Mathematics Doklady, vol. 17 (1976), pp. 522526.
Lichtenberg, A. J. and Lieberman, M. A. [1], Regular and stochastic motion, Springer-Verlag, Berlin, 1983.
Martin-Löf, P. [1], The definition of random sequences, Information and Control, vol. 9 (1966), pp. 606619.
Martin-Löf, P. [2], Complexity oscillations in infinite binary sequences, Zeitschrift für Wahrscheinlichkeits-theorie und Verwandte Gebiete, vol. 19 (1971), pp. 225230.
von Mises, R. [1], Grundlagen der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift, vol. 5 (1919), pp. 5299.
von Mises, R. [2], Wahrscheinlichkeit, Statistik und Wahrheit, Springer-Verlag, Vienna, 1928. (The English edition, Dover, New York, 1981, is cited as [2a].)
von Mises, R. [3] (with Geiringer, H.), Mathematical theory of probability and statistics, Academic Press, New York, 1964.
Oxtoby, J. C. [1], Measure and category, 2nd ed., Springer-Verlag, Berlin, 1980.
Petersen, K. [1], Ergodic theory, Cambridge University Press, Cambridge, 1983.
Sacks, G. [1], Measure theoretic uniformity in recursion theory and set theory, Transactions of the American Mathematical Society, vol. 142 (1969), pp. 381424.
Schnorr, C. P. [1], Zufälligkeit und Wahrscheinlichkeit, Lecture Notes in Mathematics, vol. 218, Springer-Verlag, Berlin, 1971.
Schnorr, C. P. [2], Process complexity and effective random tests, Journal of Computer and System Sciences, vol. 7 (1973), pp. 376388.
Tornier, E. [1], Comment, Mathematische Annalen, vol. 108 (1933), p. 320.
Ville, J. [1], Étude critique de la notion de collectif, Gauthier-Villars, Paris, 1939.
Wald, A. [1], Die Widerspruchsfreiheit des Kollektivbegriffs in der Wahrscheinlichkeitsrechnung, Ergebnisse eines Mathematischen Kolloquiums, vol. 8 (1938), pp. 3872.

Related content

Powered by UNSILO

Von Mises' definition of random sequences reconsidered

  • Michiel van Lambalgen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.