Home

# Undecidability of modal and intermediate first-order logics with two individual variables

## Extract

The interest in fragments of predicate logics is motivated by the well-known fact that full classical predicate calculus is undecidable (cf. Church [1936]). So it is desirable to find decidable fragments which are in some sense “maximal”, i.e., which become undecidable if they are “slightly” extended. Or, alternatively, we can look for “minimal” undecidable fragments and try to identify the vague boundary between decidability and undecidability. A great deal of work in this area concerning mainly classical logic has been done since the thirties. We will not give a complete review of decidability and undecidability results in classical logic, referring the reader to existing monographs (cf. Suranyi [1959], Lewis [1979], and Dreben, Goldfarb [1979]). A short summary can also be found in the well-known book Church [1956]. Let us recall only several facts. Herein we will consider only logics without functional symbols, constants, and equality.

(C1) The fragment of the classical logic with only monadic predicate letters is decidable (cf. Behmann [1922]).

(C2) The fragment of the classical logic with a single binary predicate letter is undecidable. (This is a consequence of Gödel [1933].)

(C3) The fragment of the classical logic with a single individual variable is decidable; in fact it is equivalent to Lewis S5 (cf. Wajsberg [1933]).

(C4) The fragment of the classical logic with two individual variables is decidable (Segerberg [1973] contains a proof using modal logic; Scott [1962] and Mortimer [1975] give traditional proofs.)

(C5) The fragment of the classical logic with three individual variables and binary predicate letters is undecidable (cf. Surańyi [1943]). In fact this paper considers formulas of the following type

φ,ψ being quantifier-free and the set of binary predicate letters which can appear in φ or ψ being fixed and finite.

## References

Hide All
Artemov, S. and Dzhaparidze, G. [1990], Finite Kripke models and predicate logics of provability, this Journal, vol. 55, pp. 10901098.
Behmann, H. [1922], Beiträge zur Algebra der Logik, inbesondere zum Entscheidungsproblem, Mathematische Annalen, vol. 86, pp. 163229.
Church, A. [1936], A note on the “Entscheidungsproblem”, this Journal, vol. 1, pp. 4041.
Church, A. [1956], Introduction to mathematical logic V. 1, Princeton University Press, Princeton, New Jersey, 1956.
Dreben, B. and Goldfarb, W. D. [1979], The decision problem. Solvable classes of quantificational formulas, Addison Wesley, Reading, Massachusetts.
Ehsakia, L. L. and Meskhi, V. Yu. [1977], Five critical modal systems, Theoria, vol. 43, pp. 5260.
Fischer-Servi, G. [1978], The finite model property for MIPQ and some consequences, Notre Dame Journal of Formal Logic, vol. 19, pp. 687692.
Gabbay, D. M. [1976], Investigations in modal and tense logics with implications to problems in philosophy and linguistics, Synthese Library, vol. 92, Reidel, Dordrecht.
Gabbay, D. M. [1981], Semantical investigations in Heyting's intuitionistic logic, Synthese Library, vol. 148, Reidel, Dordrecht.
Gödel, K. [1933], Zum Entscheidungsproblem des logischen Funktionenkalküls, Monatschefte für Mathematische Physika, vol. 40, pp. 433443.
Kahr, A. S., Moore, E. F., and Wahg, Hao [1962], Entscheidungsproblem reduced to the ∀∃∀ case, Proceedings of the National Academy of Science of the United States of America, vol. 48, pp. 365377.
Kripke, S. [1959], A completeness theorem in modal logic, this Journal, vol. 24, pp. 114.
Kripke, S. [1962], The undecidability of monadic modal quantificational theory, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 8 pp. 113116.
Kripke, S. [1965], Semantical analysis of intuitionistic logic I: Formal systems and recursive functions (Crossely, J. N. and Dummett, M., editors), North-Holland, Amsterdam. (Semantical analysis of intuitionistic logic II, unpublished)
Lewis, H. [1979], Unsolvable classes of quantificational formulas, Addison Wesley, Reading, Massachusetts.
Maksimova, L. L. [1972], Pretabular superintuitionistic logics, Algebra i Logika, vol. 11, pp. 558570.
Maslov, S. Yu., Mints, G. E., and Orevkov, V. P. [1965], Unsolvability in the constructive predicate calculus of certain classes of formulas containing only monadic predicate variables, Soviet Mathematics Doklady, vol. 6, pp. 918920.
Mints, G. E. [1968], Some calculi of modal logic, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 98, pp. 88111.
Mortimer, M. [1975], On languages with two variables, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21, pp. 135140.
Ono, H. [1977], On some intuitionistic modal logics, Research Institute for Mathematical Sciences Publications, Kyoto University, vol. 13, pp. 687722.
Scott, D. [1962], A decision method for validity of sentences in two variables, this Journal, vol. 27, p. 477.
Segerberg, K. [1973], Two-dimensional modal logic, Journal of Philosophical Logic, vol. 2, pp. 7796.
Shehtman, V. B. [1987], On some two-dimensional modal logics, 8th International Congress on Logic, Methodology and Philosophy of Science, Moscow, 1987, Nauka, Moscow, vol. 1, pp. 326330. (Abstract)
Surańyi, J. [1943], Zur Reduktion des Entscheidungsproblems des logischen Funktionskalküls, Matematika Fizika Lepok, vol. 50, pp. 5174.
Surańyi, J. [1959], Reduktionstheorie des Entscheidungsproblems in Prädikatenkalkül der ersten Stufe, Budapest.
Vardanyan, V. A. [1986], Arithmetic complexity of predicate logics of provability and their fragments, Soviet Mathematics Doklady, vol. 33, pp. 569572.
Wajsberg, M. [1933], Ein erweiter Klassenkalkül, Monatschefte für Mathematische Physika, vol. 40, pp. 113126.

# Undecidability of modal and intermediate first-order logics with two individual variables

## Metrics

### Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *