Skip to main content Accessibility help
×
Home

THERE ARE NO INTERMEDIATE STRUCTURES BETWEEN THE GROUP OF INTEGERS AND PRESBURGER ARITHMETIC

  • GABRIEL CONANT (a1)

Abstract

We show that if a first-order structure ${\cal M}$ , with universe ℤ, is an expansion of (ℤ,+,0) and a reduct of (ℤ,+,<,0), then ${\cal M}$ must be interdefinable with (ℤ ,+,0) or (ℤ ,+,<,0).

Copyright

References

Hide All
[1]Alouf, E. and D’Elbée, C., A new dp-minimal expansion of the integers, 2017, arXiv:1707.07203 [math.LO].
[2]Artin, M., Algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.
[3]Aschenbrenner, M., Dolich, A., Haskell, D., Macpherson, D., and Starchenko, S., Vapnik-Chervonenkis density in some theories without the independence property, II. Notre Dame Journal of Formal Logic, vol. 54 (2013), no. 3–4, pp. 311363.
[4]Aschenbrenner, M., Dolich, A., Haskell, D., Macpherson, D., and Starchenko, S., Vapnik-Chervonenkis density in some theories without the independence property, I. Transactions of the American Mathematical Society, vol. 368 (2016), no. 8, pp. 58895949.
[5]Bang, T., A solution of the “plank problem”. Proceedings of the American Mathematical Society, vol. 2 (1951), pp. 990993.
[6]Belegradek, O., Peterzil, Y., and Wagner, F., Quasi-o-minimal structures, this Journal, vol. 65 (2000), no. 3, pp. 1115–1132.
[7]Cluckers, R., Presburger sets and p-minimal fields, this Journal, vol. 68 (2003), no. 1, pp. 153–162.
[8]Conant, G. and Pillay, A., Stable groups and expansions of (ℤ,+,0). Preprint, 2016, arXiv:1601.05692.
[9]Dolich, A. and Goodrick, J., Strong theories of ordered Abelian groups. Fundamenta Mathematicae, vol. 236 (2017), no. 3, pp. 269296.
[10]Dolich, A., Goodrick, J., and Lippel, D., Dp-minimality: Basic facts and examples. Notre Dame Journal of Formal Logic, vol. 52 (2011), no. 3, pp. 267288.
[11]Kadets, V., Coverings by convex bodies and inscribed balls. Proceedings of the American Mathematical Society, vol. 133 (2005), no. 5, pp. 14911495.
[12]Kaplan, I. and Shelah, S., Decidability and classification of the theory of integers with primes. Preprint, 2016, arXiv:1601.07099.
[13]Marker, D., Semialgebraic expansions of C. Transactions of the American Mathematical Society, vol. 320 (1990), no. 2, pp. 581592.
[14]Marker, D., Model Theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002.
[15]Michaux, C. and Villemaire, R., Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of Cobham’s and Semenov’s theorems. Annals of Pure and Applied Logic, vol. 77 (1996), no. 3, pp. 251277.
[16]Palacín, D. and Sklinos, R., Superstable expansions of free abelian groups. Preprint, 2014, arXiv:1405.0568.
[17]Pillay, A., Geometric Stability Theory, Oxford Logic Guides, vol. 32, The Clarendon Press, Oxford University Press, New York, 1996.
[18]Point, F., On decidable extensions of Presburger arithmetic: From A. Bertrand numeration systems to Pisot numbers, this Journal, vol. 65 (2000), no. 3, pp. 1347–1374.
[19]Poizat, B., Supergénérix. Journal of Algebra, vol. 404 (2014), pp. 240270, À la mémoire d’Éric Jaligot. [In memoriam Éric Jaligot].
[20]Presburger, M., Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, Warszawa, 1929, pp. 92101.
[21]Prest, M., Model Theory and Modules, Handbook of Algebra, vol. 3, North-Holland, Amsterdam, 2003, pp. 227253.
[22]Simon, P., A Guide to NIP Theories, Lecture Notes in Logic, vol. 44, Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015.
[23]Tarski, A., Uwagi o stopniu równoważności wielokatów. Parametr, vol. 2 (1931–1932), pp. 310314.

Keywords

THERE ARE NO INTERMEDIATE STRUCTURES BETWEEN THE GROUP OF INTEGERS AND PRESBURGER ARITHMETIC

  • GABRIEL CONANT (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed