Skip to main content Accessibility help
×
Home

Strong measure zero sets without Cohen reals

  • Martin Goldstern (a1), Haim Judah (a1) and Saharon Shelah (a2)

Abstract

If ZFC is consistent, then each of the following is consistent with :

(1) X ⊆ ℝ is of strong measure zero iff ∣X∣ ≤ ℵ1 + there is a generalized Sierpinski set.

(2) The union of ℵ many strong measure zero sets is a strong measure zero set + there is a strong measure zero set of size ℵ2 + there is no Cohen real over L.

Copyright

Corresponding author

2. Mathematisches Institut, Freie Universität Berlin, 14195 Berlin, Germany, E-mail: goldstrn@math.fu-berlin.de

References

Hide All
[1]Abraham, U. and Shelah, S., Isomorphism types of Aronszajn trees, Israel Journal of Mathematics, vol. 50 (1985), pp. 75113.
[2]Baumgartner, J., Iterated forcing, Surveys in set theory (Mathias, A. R. D., editor), London Mathematical Society Lecture Note Series, No. 8, Cambridge University Press, Cambridge, 1983.
[3]Blass, A. and Shelah, S., There may be simple and -points, and the Rudin-Keisler order may be downward directed, Annals of Pure and Applied Logic, vol. 33 (1987), pp. 213243.
[4]Carlson, T., Strong measure zero and strongly meager sets, Proceedings of the American Mathematical Society, vol. 118 (1993), pp. 577586.
[5]Corazza, P., The generalized Borel conjecture and strongly proper orders, Transactions of the American Mathematical Society, vol. 316 (1989), pp. 115140.
[6]Goldstern, M., Tools for your forcing construction, Proceedings of the 1991 Bar Ilan conference on Set Theory of the Reals (Judah, H., editor), Israel Mathematical Conference Proceedings, vol. 6, 1993.
[7]Groszek, M. and Jech, T., Generalized iteration of forcing, Transactions of the American Mathematical Society, vol. 324 (1991), pp. 126.
[8]Judah, H., Shelah, S., and Woodin, H., The Borel conjecture, Annals of Pure and Applied Logic, vol. 50 (1990), pp. 255269.
[9]Judah, H. and Shelah, S., MA(ω-centered): Cohen reals, strong measure zero sets and strongly meager sets, Israel Journal of Mathematics, vol. 68 (1989), pp. 117.
[10]Judah, H., Strong measure zero sets and rapid filters, this Journal, vol. 53 (1988), pp. 393402.
[11]Kunen, K., Set theory: An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.
[12]Miller, A., Mapping a set of reals onto the reals, this Journal, vol. 48 (1983), pp. 575584.
[13]Miller, A., Rational perfect set forcing, Axiomatic set theory, Contemporary Mathematics, vol. 31, American Mathematical Society, Providence, Rhode Island, 1984, pp. 143159.
[14]Miller, A., Some properties of measure and category, Transactions of the American Mathematical Society, vol. 266 (1981), pp. 93114.
[15]Pawlikowski, J., Power of transitive bases of measure and category, Proceedings of the American Mathematical Society, vol. 93 (1985), pp. 719729.
[16]Pawlikowski, J., Finite support iteration and strong measure zero sets, this Journal, vol. 55 (1990), pp. 674677.
[17]Rothberger, F., Sur des families indenombrables de suites de nombres naturels et les problèmes concernant la proprieté C, Proceedings of the Cambridge Philosophical Society, vol. 37 (1941), pp. 109126.
[18]Rothberger, F., Eine Verschärfung der Eigenschaft C, Fundamenta Mathematicae, vol. 30 (1938), pp. 5055.
[19]Shelah, S., Proper forcing, Lecture Notes in Mathematics, vol. 942, Springer-Verlag, Berlin and New York, 1982.
[20]Shelah, S., Proper and improper forcing, Perspectives in Mathematics, Springer-Verlag.
[21]Shelah, S., Some notes on iterated forcing with , Notre Dame Journal of Formal Logic, vol. 29 (1988), pp. 117.
[22]Solovay, R. and Tennenbaum, S., Iterated Cohen extensions and Souslin's problem, Annals of Mathematics, vol. 94 (1971), pp. 201245.
[23]Solovay, R., Real valued measurable cardinals, Axiomatic set theory (Scott, D., editor), Proceedings of Symposia in Pure Mathematics, vol. 13, Part 1, American Mathematical Society, Providence, Rhode Island, 1971, pp. 397428.
[24]Veličkovič, B., CCC posets of perfect trees, preprint, Compositio Mathematica, vol. 79 (1991), pp. 279294.

Related content

Powered by UNSILO

Strong measure zero sets without Cohen reals

  • Martin Goldstern (a1), Haim Judah (a1) and Saharon Shelah (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.