[1]
Bienvenu, L., Patey, L., and Shafer, P., *On the logical strengths of partial solutions to mathematical problems*, 2015, submitted, available at http://arxiv.org/abs/1411.5874.
[2]
Cholak, P. A., Jockusch, C. G., and Slaman, T. A.,
*On the strength of Ramsey’s theorem for pairs*
, this Journal, vol. 66 (2001), no. 01, pp. 1–55.

[3]
Chong, C., Slaman, T., and Yang, Y.,
*The metamathematics of stable Ramsey’s theorem for pairs*
. Journal of the American Mathematical Society, vol. 27 (2014), no. 3, pp. 863–892.

[4]
Chubb, J., Hirst, J. L., and McNicholl, T. H.,
*Reverse mathematics, computability, and partitions of trees*
, this Journal, vol. 74 (2009), no. 01, pp. 201–215.

[5]
Corduan, J., Groszek, M. J., and Mileti, J. R.,
*Reverse mathematics and Ramsey’s property for trees*
, this Journal, vol. 75 (2010), no. 03, pp. 945–954.

[6]
Dorais, F. G., Dzhafarov, D. D., Hirst, J. L., Mileti, J. R., and Shafer, P.,
*On uniform relationships between combinatorial problems*
. Transactions of the American Mathematical Society, vol. 368 (2016), no. 2, pp. 1321–1359.

[7]
Dzhafarov, D. D.,
*Cohesive avoidance and strong reductions*
. Proceedings of the American Mathematical Society, vol. 143 (2014), no. 2, pp. 869–876.

[8]
Dzhafarov, D. D., Hirst, J. L., and Lakins, T. J.,
*Ramsey’s theorem for trees: The polarized tree theorem and notions of stability*
. Archive for Mathematical Logic, vol. 49 (2010), no. 3, pp. 399–415.

[9]
Dzhafarov, D. D. and Jockusch, C. G.,
*Ramsey’s theorem and cone avoidance*
, this Journal, vol. 74 (2009), no. 2, pp. 557–578.

[10]
Flood, S.,
*Reverse mathematics and a Ramsey-type König’s lemma*
, this Journal, vol. 77 (2012), no. 4, pp. 1272–1280.

[12]
Friedman, H. M.,
*Some systems of second order arithmetic and their use*
, Proceedings of the International Congress of Mathematicians, vol. 1, Canadian Mathematical Society, Montreal, Vancouver, 1974, pp. 235–242.

[14]
Hirschfeldt, D. R., Slicing the Truth, Lecture Notes Series, Institute for Mathematical Sciences, vol. 28, National University of Singapore, World Scientific Publishing, Hackensack, NJ, 2014.

[15]
Hirschfeldt, D. R. and Jockusch, C. G., *On notions of computability theoretic reduction between*
${\rm{\Pi }}_2^1$
*principles*, to appear.
[16]
Jockusch, C. G.,
*Ramsey’s theorem and recursion theory*
, this Journal, vol. 37 (1972), no. 2, pp. 268–280.

[17]
Lerman, M., Solomon, R., and Towsner, H.,
*Separating principles below Ramsey’s theorem for pairs*
. Journal of Mathematical Logic, vol. 13 (2013), no. 02, p. 1350007.

[18]
Liu, L.,
*RT*
^{2}
_{2}
*does not imply WKL*
_{0}
, this Journal, vol. 77 (2012), no. 2, pp. 609–620.

[19]
McNicholl, T. H., The inclusion problem for generalized frequency classes, Ph.D. thesis, George Washington University, ProQuest LLC, Ann Arbor, MI, 1995.

[20]
Mileti, J. R., Partition theorems and computability theory, Ph.D. thesis, Carnegie Mellon University, ProQuest LLC, Ann Arbor, MI, 2004.

[21]
Montalbán, A.,
*Open questions in reverse mathematics*
, this Journal, vol. 17 (2011), no. 03, pp. 431–454.

[23]
Patey, L.,
*Iterative forcing and hyperimmunity in reverse mathematics*
, Evolving Computability (Beckmann, Arnold, Mitrana, Victor, and Soskova, Mariya, editors), Lecture Notes in Computer Science, vol. 9136, Springer International Publishing, 2015, pp. 291–301.

[24]
Patey, L.,
*Ramsey-type graph coloring and diagonal non-computability*
. Archive for Mathematical Logic, vol. 54 (2015), no. 7–8, pp. 899–914.

[26]
Patey, L., **
***The reverse mathematics of ramsey-type theorems*
, Ph.D. thesis, Université Paris Diderot, 2016.

[27]
Seetapun, D. and Slaman, T. A.,
*On the strength of Ramsey’s theorem*
, Notre Dame Journal of Formal Logic, vol. 36 (1995), no. 4, pp. 570–582.

[28]
Shoenfield, J. R.,
*On degrees of unsolvability*
, Annals of Mathematics, vol. 69 (1959), no. 03, pp. 644–653.

[29]
Simpson, S. G., Subsystems of Second Order Arithmetic, Cambridge University Press, Cambridge, Association for Symbolic Logic, Poughkeepsie, NY, 2009.