Skip to main content Accessibility help
×
Home

ω-STABILITY AND MORLEY RANK OF BILINEAR MAPS, RINGS AND NILPOTENT GROUPS

  • ALEXEI G. MYASNIKOV (a1) and MAHMOOD SOHRABI (a2)

Abstract

In this paper we study the algebraic structure of ω-stable bilinear maps, arbitrary rings, and nilpotent groups. We will also provide rather complete structure theorems for the above structures in the finite Morley rank case.

Copyright

References

Hide All
[1] Sohrabi, M. and Myasnikov, A. G., Elementary coordinatization of finitely generated nilpotent groups , preprint, arXiv:1311.1391v3.
[2] Sohrabi, M. and Myasnikov, A. G., Groups elementarily equivalent to a free nilpotent group of finite rank . Annals of Pure and Applied Logic. vol. 162 (2011), no. 11, pp. 916933.
[3] Nesin, A. and Borovik, A. V., Groups of Finite Morley Rank, Oxford Logic Guides, vol. 26, Oxford University Press, New York, 1994.
[4] Baudisch, A., A new uncountably categorical group. Transactions of the American Mathematical Society. vol. 348 (1998), no. 10, pp. 38893940.
[5] Baumslag, G., Lecture Notes on Nilpotent Groups , Regional Conference Series in Mathematics, no. 2, American Mathematical Society, Providence, RI, 1971.
[6] Frécon, O., Around unipotence in groups of finite morley rank . Journal of Group Theory, vol. 9 (2006), no. 3, pp. 341359.
[7] Frécon, O., Conjugacy of carter subgroups in groups of finite morley rank . Journal of Mathematical Logic, vol. 8 (2008), pp. 4192.
[8] Reineke, J. and Cherlin, G. L., Categoricity and stability of commutative rings . Annals of Mathematical Logic, vol. 10 (1976), pp. 367399.
[9] Hall, P., Nilpotent Groups, Notes of lectures given at the Canadian Mathematical Congress, University of Alberta, 1957.
[10] Macintyre, A., On ω 1 -categorical theories of abelian groups . Fundamenta Mathematicae, vol. 70 (1970), pp. 253270.
[11] Macintyre, A., On ω 1 -categorical theories of fields. Fundamenta Mathematicae , vol. 71 (1971), pp. 125.
[12] Myasnikov, A. G., Elementary theory of a module over a local ring . Siberian Mathematical Journal, vol. 30 (1989), no. 3, pp. 7283.
[13] Myasnikov, A. G., Definable invariants of bilinear mappings . Siberian Mathematical Journal, vol. 31 (1990), no. 1, pp. 8999.
[14] Myasnikov, A. G., The structure of models and a criterion for the decidability of complete theories of finite-dimensional algebras . Mathematics of USSR-Izvestia, vol. 34 (1990), no. 2, pp. 389407.
[15] Myasnikov, A. G., The theory of models of bilinear mappings . Siberian Mathematical Journal, vol. 31 (1990), no. 3, pp. 439451.
[16] Nesin, A., Poly-separated and ω-stable nilpotent groups , this Journal, vol. 56 (1991), pp. 694699.
[17] Quillen, D., Rational homotopy theory . Annals of Mathematics, vol. 90 (1960), pp. 205295.
[18] Sohrabi, M., On the elementary theories of free nilpotent lie algebras and free nilpotent groups, Ph.D. thesis, Carleton University, Ottawa/Canada, 2009.
[19] Stewart, I., An algebraic treatment of mal’cevs theorem concerning nilpotent lie groups and their lie algebras . Compositio Mathematica, vol. 22 (1970), pp. 289312.
[20] Wilson, J. S. and Altinel, T., On the linearity of torsion-free nilpotent groups of finite morley rank . Proceedings of the American Mathematical Society, 2009.
[21] Warfield, R. B., Nilpotent Groups, Lecture Notes in Mathematics, vol. 513, Springer-Verlag Berlin, 1976.
[22] Zariski, O. and Samuel, P., Commutative Algebra. II, Van Nostrand, Princeton, 1960.
[23] Zilber, B. I., Rings with-categorical theories . Algebra and Logic, vol. 13 (1974), pp. 95104.
[24] Zilber, B. I., Uncountably categorical nilpotent groups and lie algebras . Soviet Mathematics (Iz. VUZ), vol. 26 (1982), no. 5, pp. 9899.

Keywords

ω-STABILITY AND MORLEY RANK OF BILINEAR MAPS, RINGS AND NILPOTENT GROUPS

  • ALEXEI G. MYASNIKOV (a1) and MAHMOOD SOHRABI (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.