[1]Ash, C. J. and Knight, J., Computable structures and the hyperarithmetical hierarchy, Elsevier, Amsterdam, 2000.

[2]Chisholm, J., The complexity of intrinsically r.e. subsets of existentially decidable models, this Journal, vol. 55 (1990), pp. 1213–1232.

[3]Csima, B. F., Harizanov, V. S., Miller, R. G., and Montalbán, A., *Computability of Fraïssé limits*, to appear.

[4]Downey, R. G., Goncharov, S. S., and Hirschfeldt, D. R., Degree spectra for relations on Boolean algebras, Algebra and Logic, vol. 42 (2003), pp. 105–111.

[5]Downey, R. G. and Jockusch, C. G., Every low Boolean algebra is isomorphic to a recursive one, Proceedings of the American Mathematical Society, vol. 122 (1994), pp. 871–880.

[6]Downey, R. G. and Knight, J. F., Orderings with α-th jump degree 0^{(α)}, Proceedings of the American Mathematical Society, vol. 114 (1992), pp. 545–552.

[7]Goncharov, S. S., Harizanov, V. S., Knight, J. F., McCoy, C., Miller, R. G., and Solomon, R., Enumerations in computable structure theory, Annals of Pure and Applied Logic, vol. 136 (2005), pp. 219–246.

[8]Harizanov, V. S., Uncountable degree spectra, Annals of Pure Applied Logic, vol. 54 (1991), pp. 255–263.

[9]Harizanov, V. S., Pure computable model theory, Handbook of recursive mathematics, vol. 1, Studies in Logic and the Foundations of Mathematics, vol. 138, Elsevier, Amsterdam, 1998, pp. 3–114.

[10]Harizanov, V. S., Relations on computable structures, Contemporary mathematics (Bokan, N., editor), University of Belgrade, 2000, pp. 65–81.

[11]Hirschfeldt, D. R., Khoussainov, B., Shore, R. A., And Slinko, A. M., Degree spectra and computable dimensions in algebraic structures, Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71–113.

[12]Hodges, W., A shorter model theory, Cambridge University Press, Cambridge, 1997.

[13]Jockusch, C. G. Jr. and Soare, R. I., Degrees of orderings not isomorphic to recursive linear orderings, Annals of Pure and Applied Logic, vol. 52 (1991), pp. 39–64.

[14]Khoussainov, B. and Shore, R. A., Computable isomorphisms, degree spectra of relations, and Scott families, Annals of Pure and Applied Logic, vol. 93 (1998), pp. 153–193.

[15]Khoussainov, B. and Shore, R. A., Effective model theory: the number of models and their complexity, Models and computability: Invited papers from logic colloquium '97 (Cooper, S.B. and Truss, J.K., editors), London Mathematical Society Lecture Note Series, vol. 259, Cambridge University Press, Cambridge, 1999, pp. 193–240.

[16]Knight, J. F., Degrees coded in jumps of orderings, this Journal, vol. 51 (1986), pp. 1034–1042.

[17]Miller, R., The -spectrum of a linear order, this Journal, vol. 66 (2001), pp. 470–486. [18]Moses, M., Relations intrinsically recursive in linear orders, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 32 (1986), pp. 467–472.

[19]Richter, L. J., Degrees of structures, this Journal, vol. 46 (1981), pp. 723–731.

[20]Soare, R. I., Recursively enumerable sets and degrees, Springer-Verlag, New York, 1987.