Skip to main content Accessibility help
×
Home

A proof-theoretic characterization of the primitive recursive set functions

  • Michael Rathjen (a1)

Abstract

Let KP be the theory resulting from Kripke-Platek set theory by restricting Foundation to Set Foundation. Let G: VV (V ≔ universe of sets) be a Δ0-definable set function, i.e. there is a Δ0-formula φ(x, y) such that φ(x, G(x)) is true for all sets x, and V ⊨ ∀x∃!yφ(x, y). In this paper we shall verify (by elementary proof-theoretic methods) that the collection of set functions primitive recursive in G coincides with the collection of those functions which are Σ1-definable in KP + Σ1-Foundation + ∀x∃!yφ(x, y). Moreover, we show that this is still true if one adds Π1-Foundation or a weak version of Δ0-Dependent Choices to the latter theory.

Copyright

Corresponding author

Department of Mathematics, Ohio State University, Columbus, Ohio 43210.

References

Hide All
[B]Barwise, J., Admissible sets and structures, Springer-Verlag, Berlin, 1975.
[C]Cantini, A., On weak theories of sets and classes which are based on strict -reflection, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 31 (1985), pp. 321332.
[D]Devlin, K., Constructibility, Springer-Verlag, Berlin, 1984.
[G]Gandy, R. O., Set-theoretic functions for elementary syntax, Axiomatic set theory. Part 2, Proceedings of Symposia in Pure Mathematics, vol. 13, part 2, American Mathematical Society, Providence, Rhode Island, 1974, pp. 103126.
[JäPo]Jäger, G. and Pohlers, W., Eine beweistheoretische Untersuchungen von und verwandter Systeme, Bayerische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse: Sitzungsberichte, 1982, pp. 128.
[J]Jensen, R. B., The fine structure of the constructible hierarchy, Annals of Mathematical Logic, vol. 4 (1972), pp. 229308.
[JK]Jensen, R. B. and Karp, C., Primitive recursive set functions, Axiomatic set theory. Part 1, Proceedings of Symposia in Pure Mathematics, vol. 13, part 1, American Mathematical Society, Providence, Rhode Island, 1971, pp. 143176.
[P]Parsons, C., On a number theoretic choice schema and its relation to induction, Intuitionism and proof theory (Kino, A.et al., editors), North-Holland, Amsterdam, 1970, pp. 459474.
[Schw]Schwichtenberg, H., Some applications of cut-elimination, Handbook of Mathematical Logic (Barwise, J., editor), North-Holland, Amsterdam, 1977, pp. 868895.
[Si]Simpson, S. G., Set theoretic aspects of ATR, Logic Colloquium '80 (van Dalen, D.et al., editors), North-Holland, Amsterdam, 1982, pp. 255271.
[T]Tait, W. W., Normal derivability in classical logic, The syntax and semantics of infinitary languages (Barwise, J., editor), Springer-Verlag, Berlin, 1968, pp. 204236.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed