Skip to main content Accessibility help
×
Home

The PCF conjecture and large cardinals

  • Luís Pereira (a1)

Abstract

We prove that a combinatorial consequence of the negation of the PCF conjecture for intervais, involving free subsets relative to set mappings, is not implied by even the strongest known large cardinal axiom.

Copyright

References

Hide All
[1]Brooke-Taylor, A. and Friedman, S. D., Large cardinals and gap-1 morasses, submitted.
[2]Burke, M. R. and Magidor, M., Shelah's PCF theory and its applications, Annals of Pure and Applied Logic, vol. 50 (1990), pp. 207254.
[3]Cummings, J., Foreman, M., and Magidor, M., Canonical structure in the universe of set theory I, Annals of Pure and Applied Logic, vol. 129 (2004), no. 1-3, pp. 211243.
[4]Cummings, J., Foreman, M., and Magidor, M., Canonical structure in the universe of set theory II, Annals of Pure and Applied Logic, vol. 142 (2006), no. 1-3, pp. 5575.
[5]Donder, H. D., Jensen, R. B., and Stanley, L. J., Condensation-coherent global square systems, Proceedings of the Symposium in Pure Mathematics (Nerode, A. and Shore, R. A., editors), Recursion Theory, vol. 42, American Mathematical Society, Providence, 1985, pp. 237258.
[6]Erdős, P., Hajnal, A., Máté, A., and Rado, R., Combinatorial set theory: Partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, vol. 76, North-Holland, Amsterdam, 1984.
[7]Foreman, M. and Magidor, M., Large cardinals and definable counterexamples to the continuum hypothesis, Annals of Pure and Applied Logic, vol. 76 (1995), pp. 4797.
[8]Galvin, F., Jech, T., and Magidor, M., An ideal game, this Journal, vol. 43 (1978), pp. 284292.
[9]Gitik, M., On a question of Pereira, to be submitted.
[10]Gitik, M. and Magidor, M., The singular cardinals problem revisited, Set Theory of the Continuum (Judah, H., Just, W., and Woodin, H., editors), Springer-Verlag, Berlin, 1992, pp. 243279.
[11]Gitik, M. and Magidor, M., Extender based forcings, this Journal, vol. 59 (1994), pp. 445460.
[12]Hamkins, J. D., Fragile measurability, this Journal, vol. 59 (1994), pp. 262282.
[13]Holz, M., Steffens, K., and Weitz, E., Introduction to cardinal arithmetic, Advanced Texts, Birkháuser-Verlag, Basel, 1999.
[14]Jech, T., On the cofinality of countable products of cardinal numbers, (Baker, A., Bollobás, B., and Hajnal, A., editors), Cambridge University Press, 1990, A tribute to Paul Erdös, pp. 289305.
[15]Jech, T., Set theory, the third millenium edition ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
[16]Kanamori, A., The higher infinite. Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1997.
[17]Koepke, P., The consistency strength of the free-subset property for ℵω, this Journal, vol. 49 (1984), pp. 11981204.
[18]Koszmider, P., Semimorasses and nonreflection at singular cardinals, Annals of Pure and Applied Logic, vol. 72 (1995), pp. 123.
[19]Kunen, K., Elementary embeddings and infinitary combinatorics, this Journal, vol. 36 (1971), pp. 407413.
[20]Laver, R., Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel Journal of Mathematics, vol. 29 (1978), pp. 385388.
[21]Magidor, M., On the singular cardinals problem I, Israel Journal of Mathematics, vol. 28 (1977), pp. 131.
[22]Menas, T., Consistency results concerning supercompactness. Transactions of the American Mathematical Society, vol. 223 (1976), pp. 6191.
[23]Mildenberger, H., More canonical forms and dense free subsets. Annals of Pure and Applied Logic, vol. 125 (2004), pp. 7599.
[24]Pereira, L., Combinatoire des cardinaux singuliers et structures PCF, Ph.D. thesis, University of Paris VII, Paris, 09 2007.
[25]Ruyle, J., Cardinal sequences of PCF structures, Ph.D. thesis, University of California, Riverside, 09 1998.
[26]Shelah, S., Independence of strong partition relation for small cardinals and the free-subset problem, this Journal, vol. 45 (1980), pp. 505509.
[27]Shelah, S., ω, may have a strong partition relation, Israel Journal of Mathematics, vol. 38 (1981), pp. 283288.
[28]Shelah, S., The singular cardinals problem; independence results, Surveys in Set Theory (Mathias, A. R. D., editor), London Mathematical Society Lecture Note Series, vol. 87, Cambridge University Press, Cambridge, 1983, pp. 116134.
[29]Shelah, S., Cardinal arithmetic, Oxford Logic Guides 29, Clarendon Press, Oxford, 1994.
[30]Shelah, S., Large normal ideals concentrating on a fixed small cardinality, Archive for Mathematical Logic, vol. 35 (1996), pp. 341347.
[31]Shelah, S., PCF and infinite free subsets in an algebra, Archive for Mathematical Logic, vol. 41 (2002), pp. 321359.

Keywords

Related content

Powered by UNSILO

The PCF conjecture and large cardinals

  • Luís Pereira (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.