Skip to main content Accessibility help

Modules with few types over a hereditary noetherian prime ring

  • Vera Puninskaya (a1)


It is proved that Vaught's conjecture is true for modules over an arbitrary countable hereditary noetherian prime ring.



Hide All
[1]Buechler, S., The classification of small weakly minimal sets III. Modules, this Journal, vol. 53 (1988), pp. 975979.
[2]Facchini, A. and Puninski, G., Σ-pure-injective modules over serial rings, Abelian groups and modules (Facchini, A. and Menini, C., editors). Kluwer Academic Publishers, 1995, pp. 145162.
[3]Faith, C., Algebra: Rings, Modules and Categories I. Springer Verlag, 1973.
[4]Faith, C., Algebra: Rings, Modules and Categories II, Springer Verlag, 1973.
[5]Garavaglia, S., Decomposition of totally transcendental modules, this Journal, vol. 45 (1980), pp. 155164.
[6]Herzog, I., Modules with few types, Journal of Algebra, vol. 149 (1992), pp. 358370.
[7]Jensen, C. U. and Lenzing, H., Model Theoretic Algebra: with particular emphasis on Fields, Rings, Modules, Gordon and Breach, 1989.
[8]Kasch, F., Moduln und ringe, Teubner, B.G., 1977.
[9]McConnell, J. C. and Robson, J. C., Noncommutative noetherian Rings, Willey, 1987.
[10]Pillay, A., Geometric Stability Theory, Oxford Logic Guides, vol. 32, Oxford University Press, 1996.
[11]Prest, M., Model Theory and Modules, Cambridge University Press, 1988.
[12]Prest, M. and Puninskaya, V. A., Vaught's conjecture for modules over a commutative Prüfer ring. Algebra i Logika, to appear.
[13]Puninskaya, V. A., Vaught's conjecture for modules over a serial ring, this Journal, to appear.
[14]Puninskaya, V. A., Vaught's conjecture for modules over a Dedekind prime ring, Bulletin of the London Mathematical Society, vol. 31 (1991), pp. 129135.
[15]Stenström, B., Rings of Quotients, Springer Verlag, 1975.
[16]Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, 1991.
[17]Ziegler, M., Model theory of modules, Annals of Pure and Applied Logic, vol. 26 (1984), pp. 149213.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed