Skip to main content Accessibility help
×
×
Home

Limitwise monotonic functions, sets, and degrees on computable domains

  • Asher M. Kach (a1) and Daniel Turetsky (a2)

Abstract

We extend the notion of limitwise monotonic functions to include arbitrary computable domains. We then study which sets and degrees are support increasing (support strictly increasing) limitwise monotonic on various computable domains. As applications, we provide a characterization of the sets S with computable increasing η-representations using support increasing limitwise monotonic sets on ℚ and note relationships between the class of order-computable sets and the class of support increasing (support strictly increasing) limitwise monotonic sets on certain domains.

Copyright

References

Hide All
[1] Coles, Richard J., Downey, Rod, and Khoussainov, Bakhadyr, On initial segments of computable linear orders, Order, vol. 14 (1997/1998), no. 2, pp. 107124.
[2] Csima, Barbara F., Hirschfeldt, Denis R., Knight, Julia F., and Soare, Robert I., Bounding prime models, this Journal, vol. 69 (2004), no. 4, pp. 11171142.
[3] Downey, R. G., Computability theory and linear orderings, Handbook of Recursive Mathematics, Vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998, pp. 823976.
[4] Frolov, Andrey N. and Zubkov, Maxim V., Increasing η-representable degrees, submitted.
[5] Harris, Kenneth, η-representations of sets and degrees, this Journal, vol. 73 (2008), no. 4, pp. 10971121.
[6] Hirschfeldt, Denis, Miller, Russell, and Podzorov, Sergei, Order-computable sets, Notre Dame Journal of Formal Logic, vol. 48 (2007), no. 3, pp. 317347.
[7] Kach, Asher M., Computable shuffle sums of ordinals, Archive for Mathematical Logic, vol. 47 (2008), no. 3, pp. 211219.
[8] Khisamiev, N. G., Criterion for constructivizability of a direct sum of cyclic p-groups, Izvestiya Akademii Nauk Kazakhskoi SSR. Seriya Fiziko-Matematicheskaya, vol. 1 (1981), no. 86, pp. 5155.
[9] Khisamiev, N. G., Constructive abelian groups, Handbook of Recursive Mathematics, Vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998, pp. 11771231.
[10] Khoussainov, Bakhadyr, Nies, Andre, and Shore, Richard A., Computable models of theories with few models, Notre Dame Journal of Formal Logic, vol. 38 (1997), no. 2, pp. 165178.
[11] Lerman, Manuel, On recursive linear orderings, Logic Year 1979-80 (Proceedings of Seminars and Conferences in Mathematical Logic, University of Connecticut, Storrs, Connecticut, 1979/80), Lecture Notes in Mathematics, vol. 859, Springer, Berlin, 1981, pp. 132142.
[12] Rosenstein, Joseph G., Linear orderings, Pure and Applied Mathematics, vol. 98, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1982.
[13] Zubkov, Maxim, On η-representable sets, Computation and Logic in the Real World, Third Conference on Computability in Europe (CiE), Lecture Notes in Computer Science, vol. 4497, 2007, pp. 364366.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed