Skip to main content Accessibility help
×
Home

LIFTING PROOF THEORY TO THE COUNTABLE ORDINALS: ZERMELO-FRAENKEL SET THEORY

  • TOSHIYASU ARAI (a1)

Abstract

We describe the countable ordinals in terms of iterations of Mostowski collapsings. This gives a proof-theoretic bound on definable countable ordinals in Zermelo-Fraenkel set theory ZF.

Copyright

References

Hide All
[1]Arai, T., Intuitionistic fixed point theories over set theories, submitted, arXiv: 1312.1133.
[2]Arai, T., Proof theory for theories of ordinals III: ${\rm{\Pi }}_N $ -reflection, Gentzen’s Centenary: The Quest of Consistency, Springer, to appear.
[3]Arai, T., Proof theory for theories of ordinals I: recursively Mahlo ordinals, Annals of Pure and Applied Logic, vol. 122 (2003), pp. 185.
[4]Arai, T., Proof theory for theories of ordinals II: ${\rm{\Pi }}_3 $-reflection, Annals of Pure and Applied Logic, vol. 129 (2004), pp. 3992.
[5]Arai, T., A sneak preview of proof theory of ordinals, Annals of Japan Association for Philosophy of Sciences, vol. 20 (2012), pp. 2947.
[6]Arai, T., Proof theory of weak compactness, Journal of Mathematical Logic, vol. 13 (2013), p. 26.
[7]Barwise, J., Admissible sets and structures, Springer, Berlin, Heidelberg, 1975.
[8]Buchholz, W., A simplified version of local predicativity, Proof theory (Simmons, H., Aczel, P. H. G., and Wainer, S. S., editors), Cambridge University Press, Cambridge, 1992, pp. 115147.
[9]Buchholz, W., An intuitionistic fixed point theory, Archive for Mathematical Logic, vol. 37 (1997), pp. 2127.
[10]Buchholz, W., Finitary treatment of operator controlled derivations, Mathematical Logic Quarterly, vol. 47 (2001), pp. 363396.
[11]Buchholz, W., Relating ordinals to proofs in a perspicuous way, Reflections on the foundations of mathematics (Sommer, R., Sieg, W. and Talcott, C., editors), Association of Symbolic Logic, 2002, pp. 3759.
[12]Devlin, K. J., Constructibility, Springer, Berlin, Heidelberg, 1984.
[13]Pohlers, W., Proof theory the first step into impredicativity, Springer, Berlin, Heidelberg, 2009.
[14]Rathjen, M., Proof-theoretic analysis of KPM, Archive for Mathematical Logic, vol. 30 (1991), pp. 377403.
[15]Rathjen, M., Proof theory of refleection, Annals of Pure and Applied Logic, vol. 68 (1994), pp. 181224.
[16]Rathjen, M., An ordinal analysis of parameter free $\pi _2^1 $-comprehension, Archive for Mathematical Logic, vol. 44 (2005), pp. 263362.
[17]Rathjen, M., An ordinal analysis of stability, Archive for Mathematical Logic, vol. 44 (2005), pp. 162.
[18]Richter, W. H. and Aczel, P., Inductive definitions and reflecting properties of admissible ordinals, Generalized recursion theory (Fenstad, J. E. and Hinman, P. G., editors), Studies in Logic, vol. 79, North-Holland, Amsterdam, 1974, pp. 301381.
[19]Schütte, K., Proof theory, Springer, Berlin, Heidelberg, 1977.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed