Skip to main content Accessibility help
Home

# Equalization of finite flowers

## Extract

A dilator D is a functor from ON to itself commuting with direct limits and pull-backs. A dilator D is a flower iff D(x) is continuous. A flower F is regular iff F(x) is strictly increasing and F(f)(F(z)) = F(f(z)) (for f ϵ ON(x,y), z ϵ X).

Equalization is the following axiom: if F, G ϵ Flr (class of regular flowers), then there is an H ϵ Flr such that F ° H = G ° H. From this we can deduce that if is a set ⊆ Flr, then there is an H ϵ Flr which is the smallest equalizer of (it can be said that H equalizes ℱ iff for every F, G ϵ we have F ° H = G ° H). Equalization is not provable in set theory because equalization for denumerable flowers is equivalent to -determinacy (see a forthcoming paper by Girard and Kechris).

Therefore it is interesting to effectively find, by elementary means, equalizers even in the simplest cases. The aim of this paper is to prove Girard and Kechris's conjecture: “ is the (smallest) equalizer for Flr < ω” (where Flr < ω denotes the set of finite regular flowers). We will verify that is an equalizer of Flr < ω; we will sketch the proof that it is the smallest one at the end of the paper. We will denote by H.

Hide All

## Metrics

### Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 * Loading metrics...

### Abstract viewsAbstract views reflect the number of visits to the article landing page.

Total abstract views: 0 * Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed