Skip to main content Accessibility help
×
Home

Decision problems for tag systems

  • Stål Aanderaa (a1) and Dag Belsnes (a1)

Extract

The aim of this paper is to study tag systems as defined by Post [Post 1943, pp. 203–205 and Post, 1965, pp. 370–373]. The existence of a tag system with unsolvable halting problem was proved by Minsky by constructing a universal tag system [Minsky 1961, see also Cocke and Minsky 1964, Wang 1963, and Minsky 1967, pp. 267–273]. Hence the halting problem of a tag system can be of the complete degree 0′. We shall prove that the halting problem for a tag system can have an arbitrary (recursively enumerable) degree of undecidability (Corollary III).

A related problem arises when we ask if there exists a uniform procedure for determining, given a tag system, whether or not there is any word on which the tag system does not halt, an “immortal” word in the system. The alternative, of course, being that the system eventually halts on every (finite) word. It is shown here that this problem, the immortality problem for tag systems, is recursively unsolvable of degree 0″ (Corollary II).

Copyright

References

Hide All
[1]Aanderaa, S. O., Some recursively undecidable problems in automata theory and quantification theory. Notices of the American Mathematical Society, vol. 13 (1966), Abstract 66T-327.
[2]Axt, P. and Singletary, W. E., Decision problems for monogenie Post normal systems, Notices of the American Mathematical Society, vol. 13 (1966), Abstract pp. 640649.
[3]Axt, P. and Singletary, W. E., On deterministic normal systems, Zeitschrift fär Mathematische Logik und Grundlagen der Mathematik, vol. 15 (1969), pp. 4962.
[4]Belsnes, D. and Aanderaa, S. O., Decision problems for tag systems, Notices of the American Mathematical Society, vol. 14 (1967), Abstract 67T-698.
[5]Boone, W. W., Word problems and recursively enumerable degrees of unsolvability. A first paper on Thue systems, Annals of Mathematics, vol. 83 (1966), pp. 520571.
[6]Boone, W. W. and Rogers, H. Jr., On a problem of J. H. C. Whitehead and a problem of Alonzo Church, Mathematica Scandinavica, vol. 19 (1966), pp. 185192.
[7]Cocke, J. and Minsky, M. L., Universality of tag systems with P = 2, Journal of the Association for Computing Machinery, vol. 11 (1964), pp. 1520.
[8]Cudia, D. F. and Singletary, W. E., Post's correspondence problem and degrees of unsolvability; Degrees of unsolvability in automata and grammars, this Journal, vol. 30 (1965), pp. 267268.
[9]Cudia, D. F. and Singletary, W. E., The Post correspondence problem, this Journal, vol. 33 (1968a), pp. 418430.
[10]Cudia, D. F. and Singletary, W. E.Degrees of unsolvability in formal grammars, Journal of the Association for Computing Machinery, vol. 15 (1968b), pp. 680692.
[11]Davis, M. D., A note on universal Turing machines, Automata Studies, Princeton, 1956, pp. 167175.
[12]Fischer, P. C., Quantificational variants on the halting problem for Turing machines, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 15, pp. 211218.
[13]Hooper, Ph. K., The undecidability of the Turing machine immortality problem, this Journal, vol. 31 (1966a), pp. 219234.
[14]Hooper, Ph. K., Monogenie Post normal systems of arbitrary degree, Journal of the Association for Computing Machinery, vol. 13 (1966b), pp. 359363.
[15]Hooper, Ph. K., The immortality problem for Post normal systems, Journal of the Association for Computing Machinery, vol. 13 (1966c), pp. 594599.
[16]Maslov, S. Ju., On E. L. Post's “tag problem”, Trudy Matematičeskogo Instituta im. V. A. Steklova, vol. 72 (1964), pp. 5768.
[17]Minsky, M. L., Recursive unsolvability of Post's problem of tag and other topics in theory of Turing machines, Annals of Mathematics, vol. 74 (1961), pp. 437455.
[18]Minsky, M. L., Computation: finite and infinite machines, Prentice-Hall, 1967.
[19]Post, E. L., Formal reduction of the general combinatorial decision problem, American Journal of Mathematics, vol. 65 (1943), pp. 197215.
[20]Post, E. L., Absolutely unsolvable problems and relatively undecidable propositions—account of an anticipation, M. Davis, The Undecidable (ms. unpublished, 1941).
[21]Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill, 1967.
[22]Shepherdson, J. C., Machine configuration and word problems of given degree of unsolvability, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 11 (1965), pp. 149175.
[23]Wang, H., Tag systems and lag systems, Mathematische Annalen, vol. 152 (1963), pp. 6574.

Decision problems for tag systems

  • Stål Aanderaa (a1) and Dag Belsnes (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed