Skip to main content Accessibility help

Decidability and undecidability of theories with a predicate for the primes

  • P. T. Bateman (a1), C. G. Jockusch (a1) and A. R. Woods (a2)


It is shown, assuming the linear case of Schinzel's Hypothesis, that the first-order theory of the structure 〈ω; +, P〉, where P is the set of primes, is undecidable and, in fact, that multiplication of natural numbers is first-order definable in this structure. In the other direction, it is shown, from the same hypothesis, that the monadic second-order theory of 〈ω S, P〉 is decidable, where S is the successor function. The latter result is proved using a general result of A. L. Semënov on decidability of monadic theories, and a proof of Semënov's result is presented.



Hide All
[BM] Belyakov, É. B. and Mart'yanov, V. I., Universal theories of integers and the extended Bliznetsov hypothesis, Algebra i Logika, vol. 22 (1983), pp. 2634; English translation, Algebra and Logik, vol. 22 (1983), pp. 19–26.
[B1] Büchi, J. R., Weak second-order arithmetic and finite automata, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 6 (1960), pp. 6692.
[B2] Büchi, J. R., On a decision method in restricted second order arithmetic, Logic, Methodology, and Philosophy of Science, Proceedings of the 1960 Congress, Stanford University Press, Stanford, California, pp. 111.
[BL] Büchi, J. R. and Landweber, L., Definability in the monadic second-order theory of successor, this Journal, vol. 34 (1969), pp. 166170.
[C] Choueka, Y., Theories of automata on ω-tapes: a simplified approach, Journal of Computer and System Sciences, vol. 8 (1974), pp. 117141.
[D] Dickson, L. E., A new extension of Dirichlet's theorem on prime numbers, Messenger of Mathematics, vol. 33 (1903–1904), pp. 155161.
[E] Elgot, C. C., Decision problems of finite automata design and related arithmetics, Transactions of the American Mathematical Society, vol. 98 (1961), pp. 2151.
[ER] Elgot, C. C. and Rabin, M. O., Decidability and undecidability of second (first) order theory of (generalized) successor, this Journal, vol. 31 (1966), pp. 169181.
[HR] Halberstam, H. and Richert, H. E., Sieve methods, Academic Press, Orlando, Florida, 1974.
[HU] Hopcroft, J. E. and Ullman, J. D., Introduction to automata theory, languages, and computation, Addison-Wesley, Reading, Massachusetts, 1979.
[Mc1] McNaughton, R., review of [B1], this Journal, vol. 28 (1963), pp. 100102.
[Mc2] McNaughton, R., Testing and generating infinite sequences by a finite automaton, Information and Control, vol. 9 (1966), pp. 521530.
[Mu] Muller, D. E., Infinite sequences and finite machines, Switching circuit theory and logical design: proceedings of the fourth annual symposium, Institute of Electrical and Electronic Engineers, New York, 1963, pp. 316.
[Pr] Presburger, M., Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes Rendus du Ier Congrès des Mathématiciens des Pays Slaves, Warszawa, 1929. pp. 92101.
[Pu] Putman, H., Decidability and essential undecidability, this Journal, vol. 22 (1957), pp. 3954.
[R1] Rabin, M. O., Decidability of second-order theories and automata on infinite trees, Transactions of the American Mathematical Society, vol. 141 (1969), pp. 135.
[R2] Rabin, M. O., Automata on infinite objects and Church's problem, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 13, American Mathematical Society, Providence, Rhode Island, 1972.
[SS] Schinzel, A. and Sierpinski, W., Sur certaines hypothèses concernant les nomhres premiers, Acta Arithmetica, vol. 4 (1958), pp. 185208 (see also ibid 5 (1959), p. 259 for a correction).
[Schi] Schinzel, A., Remarks on the paper, “Sur certaines hypothèses concernant les nombres premiers”, Acta Arithmetica, vol. 7 (1961), pp. 18.
[Schn] Schnirelmann, L., Über additive Eigenschaften von Zahlen, Mathematische Annalen, vol. 107 (1933), pp. 649690.
[Se1] Semënov, A. L., On certain extensions of the arithmetic of addition of natural numbers, Mathematics of the USSR—Izvestiya, vol. 15 (1980), pp. 401419.
[Se2] Semënov, A. L., Logical theories of one-place functions on the set of natural numbers, Izvestiya Akademii Nauk SSSR Seriya Mathematicheskaya, vol. 47 (1983), pp. 623658; English translation, Mathematics of the USSR—Izvestiya, vol. 22 (1984), pp. 587–618.
[Se3] Semënov, A. L., Decidability of monadic theories, Springer Lecture Notes in Computer Science, vol. 176, Springer-Verlag, Berlin, 1984, pp. 162175.
[Si] Siefkes, D., Decidable extensions of monadic second order successor arithmetic, Automaten-theorie und formate Sprachen (Dörr, J. and Hotz, G., editors), Berichte aus dem mathematischen Forschungsinstitut Oberwolfach, vol. 3 (1970), pp. 441472.
[T1] Thomas, W., The theory of successor with an extra predicate, Mathematische Annalen, vol. 237 (1978), pp. 121132.
[T2] Thomas, W., On the bounded monadic theory of well-ordered structures, this Journal, vol. 45 (1980), pp. 334338.
[T3] Thomas, W., A combinatorial approach to the theory of ω-automata, Information and Control, vol. 48 (1981), pp. 261283.
[W] Woods, A. R., Some problems in logic and number theory, and their connections, Ph.D. thesis, University of Manchester, Manchester, 1981.

Related content

Powered by UNSILO

Decidability and undecidability of theories with a predicate for the primes

  • P. T. Bateman (a1), C. G. Jockusch (a1) and A. R. Woods (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.