[1]
Ash, C. and Knight, J., Computable Structures and the Hyperarithmetical Hierarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, North-Holland, Amsterdam, 2000.

[2]
Barwise, J.,
*Back and forth through infinitary logic*
, Studies in Model Theory, Studies in Mathematics, vol. 8, Mathematical Association of America, Buffalo, 1973, pp. 5–34.

[3]
Barwise, J., Admissible Sets and Structures, Perspectives in Mathematical Logic, Springer-Verlag, Berlin-New York, 1975.

[4]
Baldwin, J., Friedman, S.-D., Koerwien, M., and Laskowski, M. C., *Three red herrings around Vaught’s conjecture*, **
***Transactions of the American Mathematical Society*
, to appear.

[5]
Calvert, W., Knight, J., and Millar, J., *Computable trees of Scott rank*
$\omega _1^{CK}$
, *and computable approximation*, this Journal, vol. 71 (2006), no. 1, pp. 283–298.
[6]
Delhommé, C., Pouzet, M., Sági, G., and Sauer, N.,
*Representation of ideals of relational structures*
. Discrete Mathematics, vol. 309 (2009), no. 6, pp. 1374–1384.

[7]
Fraïssé, R., Theory of Relations, revised edition, Studies in Logic and the Foundations of Mathematics, vol. 145, North-Holland, Amsterdam, 2000.

[8]
Greenberg, N., Hamkins, J. D., Hirschfeldt, D., and Miller, R., Effective Mathematics of the Uncountable, Lecture Notes in Logic, Cambridge University Press, Cambridge, 2013.

[9]
Hodges, W., A Shorter Model Theory, Cambridge University Press, Cambridge, 1997.

[10]
Igusa, G. and Knight, J., *Comparing two versions of the reals*, submitted.

[11]
Jech, T., Set Theory, The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[13]
Karp, C.,
*Finite-quantifier equivalence*
, Theory of Models (**
***Proc. 1963 Internat. Sympos. Berkeley*
), North-Holland, Amsterdam, 1965, pp. 407–412.

[14]
Keisler, H. J., Model Theory for Infinitary Logic: Logic with Countable Conjunctions and Finite Quantifiers, Studies in Logic and the Foundations of Mathematics, vol. 62, North-Holland, Amsterdam–London, 1971.

[16]
Laskowski, M. C. and Shelah, S., *On the existence of atomic models*, this Journal, vol. 58 (1993), no. 4, pp. 1189–1194.

[17]
Macintyre, A. and Marker, D.,
*Degrees of recursively saturated models*
. Transactions of the American Mathematical Society, vol. 282 (1984), no. 2, pp. 539–554.

[18]
Montalbán, A., *A robuster Scott rank*, **
***Proceedings of the American Mathematical Society*
, to appear.

[19]
Morley, M., *The number of countable models*, this Journal, vol. 35 (1970), pp. 14–18.

[20]
Millar, J. and Sacks, G.,
*Atomic models higher up*
. Annals of Pure and Applied Logic, vol. 155 (2008), no. 3, pp. 225–241.

[21]
Rabin, M.,
*Computable algebra, general theory and theory of computable fields*
. Transactions of the American Mathematical Society, vol. 95 (1960), pp. 341–360.

[22]
Richter, L., *Degrees of structures*, this Journal, vol. 46 (1981), no. 4, pp. 723–731.

[23]
Sacks, G.,
*Bounds on weak scattering*
. Notre Dame Journal of Formal Logic, vol. 48 (2007), no. 1, pp. 5–31.

[24]
Scott, D.,
*Logic with denumerably long formulas and finite strings of quantifiers*
, Theory of Models (**
***Proc. 1963 Internat. Sympos. Berkeley*
), North-Holland, Amsterdam, 1965, pp. 329–341.

[25]
Solovay, R.,
*A model of set-theory in which every set of reals is Lebesgue measurable*
. Annals of Mathematics (**
***2*
), vol. 92 (1970), pp. 1–56.

[26]
Zapletal, J., *Reducibility invariants in higher set theory*, in preparation, available on the author’s website.