[1]Ash, C. J. and Knight, J. F., Computable structures and the hyperarithmetical hierarchy, Elsevier, Amsterdam, 2000.

[2]Ash, C. J. and Nerode, A., Intrinsically recursive relations, Aspects of effective algebra (Crossley, J. N., editor), Upside Down A Book Company, Steel's Creek, Australia, 1981, pp. 26–41.

[3]Chisholm, J., The complexity of intrinsically r.e. subsets of existentially decidable models, this Journal, vol. 55 (1990), pp. 1213–1232.

[4]Downey, R. G., Goncharov, S. S., and Hirschfeldt, D. R., Degree spectra of relations on boolean algebras, Algebra and Logic, vol. 42 (2003), pp. 105–111.

[5]Downey, R. G. and Jockusch, C. G. Jr., Every low Boolean algebra is isomorphic to a recursive one, Proceedings of the American Mathematical Society, vol. 122 (1994), pp. 871–880.

[6]Downey, R. G. and Knight, J. F., Orderings with α-th jump degree 0^{α}, Proceedings of the American Mathematical Society, vol. 114 (1992), pp. 545–552.

[7]Fraïssé, R., Theory of relations, North-Holland, Amsterdam, New York, 1986.

[8]Goncharov, S. S., Harizanov, V. S., Knight, J. F., McCoy, C., Miller, R. G., and Solomon, R., Enumerations in computable structure theory, Annals of Pure and Applied Logic, vol. 136 (2005), pp. 219–246.

[9]Harizanov, V. S., Uncountable degree spectra, Annals of Pure and Applied Logic, vol. 54 (1991), pp. 255–263.

[10]Harizanov, V. S., Pure computable model theory, Handbook of recursive mathematics (Ershov, Yu.L., Goncharov, S. S., Nerode, A., and Remmel, J. B., editors), vol. 1, Elsevier, Amsterdam, 1998, pp. 3–114.

[11]Harizanov, V. S., Relations on computable structures, Contemporary mathematics, University of Belgrade, 2000, pp. 65–81.

[12]Harizanov, V. S. and Miller, R. G., Spectra of structures and relations, this Journal, vol. 72 (2007), pp. 324–348.

[13]Hirschfeldt, D. R., Khoussainov, B., Shore, R. A., and Slinko, A. M., Degree spectra and computable dimensions in algebraic structures, Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71–113.

[14]Hodges, W., A shorter model theory, Cambridge University Press, Cambridge, 1997.

[15]Jockusch, C. G. Jr. and Soare, R. I., Degrees of orderings not isomorphic to recursive linear orderings, Annals of Pure and Applied Logic, vol. 52 (1991), pp. 39–64.

[16]Khoussainov, B. and Shore, R. A., Computable isomorphisms, degree spectra of relations, and Scott families, Annals of Pure and Applied Logic, vol. 93 (1998), pp. 153–193.

[17]Khoussainov, B. and Shore, R. A., Effective model theory: The number of models and their complexity, Models and computability: Invited papers from Logic Colloquium '97 (Cooper, S. B. and Truss, J. K., editors), London Mathematical Society Lecture Notes Series, vol. 259, Cambridge University Press, Cambridge, 1999, pp. 193–240.

[18]Knight, J. F., Degrees coded in jumps of orderings, this Journal, vol. 51 (1986), pp. 1034–1042.

[19]Miller, R. G., The Δ_{2}^{0}-spectrum of a linear order, this Journal, vol. 66 (2001), pp. 470–486.

[20]Moses, M. F., Relations intrinsically recursive in linear orders, Zeitschrift für Mathematische Logik und Grundtagen der Mathematik, vol. 32 (1986), pp. 467–472.

[21]Richter, L. J., Degrees of structures, this Journal, vol. 46 (1981), pp. 723–731.

[22]Slaman, T., Relative to any nonrecursive set, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2117–2122.

[23]Soare, R. I., Recursively enumerable sets and degrees, Springer-Verlag, New York, 1987.

[24]van der Waerden, B. L., Moderne Algebra, Springer, Berlin, 1930, English translation **Algebra**, (F. Blum and J. R. Schulenberger, translators) Springer-Verlag, New York, 1991.

[25]Wehner, S., Enumerations, countable structures, and Turing degrees, Proceedings of the American Mathematical Society, vol. 126 (1998), pp. 2131–2139.