Skip to main content Accessibility help
×
Home

Bounding minimal degrees by computably enumerable degrees

  • Angsheng Li (a1) and Dongping Yang (a2)

Abstract

In this paper, we prove that there exist computably enumerable degrees a and b such that a > b and for any degree x, if xa and x is a minimal degree, then x < b.

Copyright

References

Hide All
[1] Arslanov, M. M., Structural properties of the degrees below 0′, Doklady Akademii Nauk UzSSR, vol. 283 (1985).
[2] Arslanov, M. M., Lempp, S., and Shore, R. A., On isolating and isolated d-r.e. degrees, (Cooper, S. B., Siaman, T. A., and Wainer, S. S., editors), London Mathematical Society Lecture Note Series, vol. 224, Cambridge University Press, 1996.
[3] Cooper, S. B., Beyond Gödel's theorem: The failure to capture information content, to appear.
[4] Cooper, S. B., Local degree theory, Handbook of computability theory (Griffor, E., editor), North-Holland, to appear.
[5] Cooper, S. B., Minimal degrees and the jump operators, this Journal, vol. 38 (1973), pp. 249271.
[6] Cooper, S. B., Some negative results on minimal degrees below O, Recursive Function Theory Newsletter, vol. 34 (1986), item 353 (abstract).
[7] Cooper, S. B., The strong anti-cupping property for recursively enumerable degrees, this Journal, vol. 54 (1989), pp. 527539.
[8] Cooper, S. B., The jump is definable in the structure of the degrees of unsolvability, Bulletin of the American Mathematical Society, vol. 23 (1990), pp. 151158.
[9] Cooper, S. B., Definability and global degree theory, Logic colloquium '90 (Oikkonen, J. and Väänänen, J., editors), Lecture Notes in Logic, vol. 2, Springer-Verlag, Berlin, Heidelberg, New York, 1993, pp. 2545.
[10] Cooper, S. B., Discontinuous phenomenon and Turing definability, Proceedings of the international conference of algebra and analysis, 1994, Kazan, 06 1994.
[11] Cooper, S. B., Rigidity and definability in the noncomputable universe, Proceedings of the 9th international congress of logic, methodology and philosophy of science (Prawitz, D., Skyrms, B., and Westerstahl, D., editors), North-Holland, Amsterdam, 1994, pp. 209236.
[12] Cooper, S. B., On a conjecture of Kleene and Post, Complexity, logic and recursion theory (Sorbi, A., editor), Lecture Notes in Pure and Applied Mathematics, vol. 187, Marcel Dekker, New York, 1997, pp. 93122.
[13] Cooper, S. B. and Epstein, R. L., Complementing below recursively enumerable degrees, Annals of Pure and Applied Logic, vol. 34 (1987), pp. 1532.
[14] Cooper, S. B. and Seetapun, D., On a question of Posner, to appear.
[15] Cooper, S. B. and Yi, X., Isolated d-r.e. degrees, to appear.
[16] Ding, D. and Qian, L., Isolated d.r.e. degrees are dense in r.e. degrees, to appear.
[17] Ding, D., A r.e. degree not isolating any d.r.e. degrees, to appear.
[18] Downey, R. G., Δ2 0 degrees and transfer theorems, Illinois Journal of Mathematics, vol. 31 (1987), pp. 419427.
[19] Downey, R. G., D-r.e. degrees and the nondiamond theorem, Bulletin of the London Mathematical Society, vol. 21 (1989), pp. 4350.
[20] Epstein, R. L., Minimal degrees of unsolvability and the full approximation construction, vol. 3, Memoirs of the American Mathematical Society, no. 162, American Mathematical Society, Providence, R.I., 1975.
[21] Epstein, R. L., Degrees of unsolvability: Structure and theory, Lecture Notes in Mathematics, vol. 759, Springer-Verlag, Berlin, Heidelberg, New York, 1979.
[22] Epstein, R. L., Initial segments of degrees below 0′, vol. 30, Memoirs of the American Mathematical Society, no. 241, American Mathematical Society, Providence, R.I., 1981.
[23] Friedberg, R. M., Two recursively enumerable sets of incomparable degrees of unsolvability, Proceedings of the National Academy of Sciences, USA, vol. 43 (1957), pp. 236238.
[24] Jiang, Z., Diamond lattice embedded into d.r.e. degrees, Science in China, vol. 36 (1993), pp. 803811.
[25] Jockusch, C. G. Jr., Simple proofs of some theorems on high degrees, Canadian Journal of Mathematics, vol. 29 (1977), pp. 10721080.
[26] Jockusch, C. G. Jr., Degrees of generic sets, Recursion theory: Its generalizations and applications (Drake, F. R. and Wainer, S. S., editors), London Mathematical Society Lecture Notes Series, vol. 45, Cambridge University Press, Cambridge, New York, Melbourne, 1980, Proceedings of Logic Colloquium '79, Leeds, 08 1979, pp. 110139.
[27] Kleene, S. C. and Post, E. L., The upper semi-lattice of degrees of recursive unsolvability, Annals of Mathematics, vol. 2 (1954), no. 59, pp. 379407.
[28] Lachlan, A. H., Bounding minimal pairs, this Journal, vol. 44 (1979), pp. 626642.
[29] LaForte, G., Phenomena in the n-r.e. and n-REA degrees, Ph.D. thesis . University of Michigan, 1995.
[30] Lerman, M., Degrees of unsolvability, Perspectives in Mathematical Logic, Omega Series, Springer-Verlag, Berlin, Heidelberg, London, New York, Tokyo, 1983.
[31] Lerman, M., Degrees which do not bound minimal degrees, Annals of Pure and Applied Logic, vol. 30 (1986), pp. 249276.
[32] Li, A., Bounding cappable degrees, to appear in Archive of Mathematical Logic.
[33] Li, A., External center theorem of the recursively enumerable degrees, to appear.
[34] Li, A. and Yi, X., Cupping the recursively enumerable degrees by d.r.e. degrees, to appear in Proceedings of the London Mathematical Society.
[35] Posner, D. B., The upper semilattice of degrees ≤ 0′ is complemented, this Journal, vol. 46 (1981), pp. 705713.
[36] Posner, D. B. and Robinson, R. W., Degrees joining to 0, this Journal, vol. 46 (1981), pp. 714722.
[37] Post, E. L., Degrees of recursive unsolvability: Preliminary report, Bulletin of the American Mathematical Society, vol. 54 (1948), pp. 641642, abstract.
[38] Sacks, G. E., A minimal degree less than 0, Bulletin of the American Mathematical Society, vol. 67 (1961), pp. 416419.
[39] Sacks, G. E., Forcing with perfect closed sets, Axiomatic set theory I (Scott, D., editor), Proceedings of Symposia in Pure Mathematics, Los Angeles, 1967, American Mathematical Society, Providence, R.I., 1971, pp. 331355.
[40] Sasso, L. P., A cornucopia of minimal degrees, this Journal, vol. 395 (1970), pp. 383388.
[41] Seetapun, D. and Slaman, T. A., Minimal complements, unpublished manuscript, 1992.
[42] Shoenfield, J. R., A theorem on minimal degrees, this Journal, vol. 31 (1966), pp. 539544.
[43] Shore, R. A., Defining jump classes in the degrees below 0, Proceedings of the American Mathematical Society, vol. 104 (1988), pp. 287292.
[44] Slaman, T. A., A recursively enumerable degree that is not the top of a diamond in the Turing degrees, to appear.
[45] Slaman, T. A., The recursively enumerable degrees as a substructure of the Δ2 0 degrees, handwritten notes, 10 1983.
[46] Slaman, T. A. and Steel, J. R., Complementation in the Turing degrees, this Journal, vol. 54 (1989), pp. 160176.
[47] Slaman, T. A. and Woodin, W. H., Definability in the Turing degrees, Illinois Journal of Mathematics, vol. 30 (1986), pp. 320334.
[48] Soare, R. I., Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, Heidelberg, London, New York, Paris, Tokyo, 1987.
[49] Soare, R. I., Redefining recursion theory, privately circulated notes, 06 1994.
[50] Spector, C., On degrees of recursive unsolvability, Annals of Mathematics, vol. 2 (1956), no. 64, pp. 581592.
[51] Turing, A. M., Systems of logic based on ordinals, Proceedings of the London Mathematical Society, vol. 45 (1939), pp. 161228, reprinted in Davis [1965], pp. 154–222.
[52] Yates, C. E. M., Initial segments of the degrees of unsolvability, part II: minimal degrees, this Journal, vol. 35 (1970), pp. 243266.

Related content

Powered by UNSILO

Bounding minimal degrees by computably enumerable degrees

  • Angsheng Li (a1) and Dongping Yang (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.