[1]Abramson, F. G. and Harrington, L. A., Models without indiscernibles, this Journal, vol. 43 (1978), pp. 572–600.
[2]Cohn, P. M., Groups of order automorphisms of ordered sets, Mathematika, vol. 4 (1957), pp. 41–50.
[3]Conrad, P., Right-ordered groups, Michigan Mathematical Journal, vol. 6 (1959), pp. 267–275.
[4]Dugas, M. and Göbel, R., All infinite groups are Galois groups over any field, Transactions of the American Mathematical Society, vol. 304 (1987), pp. 355–384.
[5]Ehrenfeucht, A., Discernible elements in models of Peano arithmetic, this Journal, vol. 38 (1973), pp. 291–292.
[6]Gaifman, H., On models and types of Peano's arithmetic, Annals of Mathematical Logic, vol. 9 (1976), pp. 223–306.
[7]Glass, A., Ordered permutation groups, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1981.
[8]Kaye, R., Models of Peano arithmetic, Oxford Logic Guides, Oxford University Press, Oxford, 1991.
[9]Kaye, R., Kossak, R., and Kotlarski, H., Automorphisms of recursively saturated models of arithmetic, Annals of Pure and Applied Logic, vol. 55 (1991), pp. 67–99.
[10]Kirby, L. A. S. and Paris, J. B., Initial segments of models of Peano's axioms, Set theory and hierarchy theory V, Bierutowice, Poland, 1976 (Lachlan, A.et al., editor), Lecture Notes in Mathematics, no. 619, 1977, pp. 221–226.
[11]Kopytov, V. M. and Medvedev, N. Y., Right-orderable groups, Consultants Bureau, New York, 1996.
[12]Kossak, R., Satisfaction classes and automorphisms of models of PA, Logic colloquium '96, Proceedings of the colloquium held in San Sebastián, Spain, July 9–15, 1996, Springer-Verlag, Berlin, 1998, pp. 159–170.
[13]Kossak, R. and Bamber, N., On two questions concerning the automorphism groups of countable recursively saturated models of PA, Archive for Mathematical Logic, vol. 36 (1996), pp. 73–79.
[14]Kossak, R. and Schmerl, J. H., Minimal satisfaction classes with an application to rigid models of Peano arithmetic, Notre Dame Journal of Formal Logic, vol. 32 (1991), pp. 392–398.
[15]Kossak, R. and Schmerl, J. H., Arithmetically saturated models of arithmetic, Notre Dame Journal of Formal Logic, vol. 36 (1995), pp. 531–546.
[16]Kossak, R. and Schmerl, J. H., The automorphism group of an arithmetically saturated model of Peano arithmetic, Journal of the London Mathematical Society, vol. 52 (1995), no. 2, pp. 235–244.
[17]Nešetřil, J. and Rödl, V., Partitions of finite relational and set systems, Journal of Combinatorial Theory A, vol. 22 (1977), pp. 289–312.
[18]Robinson, J., Decidability and decision problems in arithmetic, this Journal, vol. 14 (1949), pp. 98–114.
[19]Schmerl, J. H., Recursively saturated, rather classless models of Peano arithmetic, Logic year 1979–80, University of Connecticut (Lerman, M.et al., editor), Lecture Notes in Mathematics, no. 859, Springer-Verlag, Berlin, 1981, pp. 268–82.
[20]Smoryński, C. A. and Stavi, J., Cofinal extension preserves recursive saturation, Model theory of algebra and arithmetic, Proceedings, Karpacz, Poland, 1978 (Pacholski, L.et al., editor), Lecture Notes in Mathematics, no. 834, Springer-Verlag, Berlin, 1980, pp. 338–345.