Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-j9sz6 Total loading time: 0.325 Render date: 2021-03-09T05:45:01.762Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The logic of interactive turing reduction

Published online by Cambridge University Press:  12 March 2014

Giorgi Japaridze
Affiliation:
Villanova University, Department of Computing Sciences, 800 Lancaster Avenue, Villanova, PA 19085, USA. E-mail: giorgi.japaridze@villanova.edu URL: http://www.csc.villanova.edu/&U0007E;japaridz/
Corresponding

Abstract

The paper gives a soundness and completeness proof for the implicative fragment of intuitionistic calculus with respect to the semantics of computability logic, which understands intuitionistic implication as interactive algorithmic reduction. This concept — more precisely, the associated concept of reducibility — is a generalization of Turing reducibility from the traditional, input/output sorts of problems to computational tasks of arbitrary degrees of interactivity.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Blass, A., Degrees of indeterminacy of games, Fundamenta Mathematicae, vol. 77 (1972), pp. 151–166.CrossRefGoogle Scholar
[2]Blass, A., A game semantics for linear logic, Annals of Pure and Applied Logic, vol. 56 (1992), pp. 183–220.CrossRefGoogle Scholar
[3]Felscher, W., Dialogues, strategies, and intuitionistic provability, Annals of Pure and Applied Logic, vol. 28 (1985), pp. 217–254.CrossRefGoogle Scholar
[4]Girard, J. Y., Linear logic, Theoretical Computer Scince, vol. 50 (1987), pp. 1–102.Google Scholar
[5]Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280–287.CrossRefGoogle Scholar
[6]Japaridze, G., Introduction to computability logic, Annals of Pure and Applied Logic, vol. 123 (2003), pp. 1–99.CrossRefGoogle Scholar
[7]Japaridze, G., Computability logic: A formal theory of interaction, Interactive Computation: The New Paradigm (Goldin, D., Smolka, S., and Wegner, P., editors), Springer-Verlag, Berlin, 2006, pp. 183–223.Google Scholar
[8]Japaridze, G., From truth to computability I, Theoretical Computer Science, vol. 357 (2006), pp. 100–135.CrossRefGoogle Scholar
[9]Japaridze, G., Propositional computability logic I, ACM Transactions on Computational Logic, vol. 7 (2006), no. 2, pp. 302–330.Google Scholar
[10]Japaridze, G., Propositional computability logic II, ACM Transactions on Computational Logic, vol. 7 (2006), no. 2, pp. 331–362.Google Scholar
[11]Japaridze, G., From truth to computability II, Theoretical Computer Science, to appear.Google Scholar
[12]Japaridze, G., Intuitionistic computability logic, Acta Cybernetica, to appear.Google Scholar
[13]Japaridze, G., In the beginning was game semantics, Logic and Games: Foundational Perspectives (Majer, O., Pietarinen, A.-V., and Tulenheimo, T., editors), Springer-Verlag, Berlin, to appear. Preprint is available at http://arxiv.org/abs/cs.LO/0507045.Google Scholar
[14]Kleene, S. C., Introduction to Metamathematics, D. van Nostrand Company, New York, Toronto, 1952.Google Scholar
[15]Kolmogorov, A. N., Zur Deutung der intuitionistischen Logik, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 35 (1932), pp. 58–65.Google Scholar
[16]Kripke, S., Semantical analysis of intuitionistic logic, Formal Systems and Recursive Functions (Crossley, J. and Dummet, M., editors), Amsterdam, 1965, pp. 92–130.Google Scholar
[17]Lorenzen, P., Ein dialogisches Konstruktivitätskriterium, Infinitistic Methods, Proceedings of the Symposium on Foundations of Mathematics, PWN, Warsaw, 1961, pp. 193–200.Google Scholar
[18]Medvedev, Y., Interpretation of logical formulas by means of finite problems and its relation to the realiability theory, Soviet Mathematics Doklady, vol. 4 (1963), pp. 180–183.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The logic of interactive turing reduction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The logic of interactive turing reduction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The logic of interactive turing reduction
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *