Skip to main content Accessibility help
×
Home

EXISTENTIALLY CLOSED MODELS IN THE FRAMEWORK OF ARITHMETIC

Published online by Cambridge University Press:  10 May 2016


ZOFIA ADAMOWICZ
Affiliation:
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES ŚNIADECKICH 8 00-956 WARSZAWA, POLAND E-mail: zosiaa@impan.pl
ANDRÉS CORDÓN-FRANCO
Affiliation:
DEPARTMENT OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE UNIVERSIDAD DE SEVILLA AVDA. REINA MERCEDES S/N 41012 SEVILLA, SPAIN E-mail: acordon@us.es
F. FÉLIX LARA-MARTÍN
Affiliation:
DEPARTMENT OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE UNIVERSIDAD DE SEVILLA AVDA. REINA MERCEDES S/N 41012 SEVILLA, SPAIN E-mail: fflara@us.es
Corresponding

Abstract

We prove that the standard cut is definable in each existentially closed model of IΔ0 + exp by a (parameter free) П1–formula. This definition is optimal with respect to quantifier complexity and allows us to improve some previously known results on existentially closed models of fragments of arithmetic.


Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Adamowicz, Z., On maximal theories, this journal, vol. 56 (1991), pp. 885890.
Adamowicz, Z. and Bigorajska, T., Existentially closed structures and Gödel’s second incompleteness theorem, this Journal, vol. 66 (2001), pp. 349356.
Adamowicz, Z., Kołodziejczyk, L. A., and Paris, J.B., Truth definitions without exponentiation and the Σ1 collection scheme, this Journal, vol. 77 (2012), pp. 649655.
Cordón-Franco, A., Fernández-Margarit, A., and Lara-Martín, F. F., A note on Σ1-maximal models, this Journal, vol. 72 (2007), pp. 10721078.
Goldrei, D. C., Macintyre, A., and Simmons, H., The forcing companions of number theories . Israel Journal of Mathematics, vol. 14 (1973), pp. 317337.CrossRefGoogle Scholar
Hájek, P. and Pudlák, P., Metamathematics of First-order Arithmetic, Perspectives in Mathematical Logic, Springer–Verlag, Berlin, 1993.CrossRefGoogle Scholar
Hirschfeld, J. and Wheeler, W., Forcing, Arithmetic, Division rings, Lecture Notes in Mathematics, vol. 454, Springer–Verlag, Berlin, 1975.CrossRefGoogle Scholar
Kaye, R., Models of Peano Arithmetic, Oxford Logic Guides, vol. 15, Oxford University Press, Oxford, 1991.Google Scholar
Kotlarski, H., An addition to Rosser’s theorem, this Journal, vol. 61 (1996), pp. 285292.
Lessan, H., Models of Arithmetic , Ph.D. thesis, University of Manchester, 1978.
Macintyre, A. and Simmons, H., Algebraic properties of number theories . Israel Journal of Mathematics, vol. 22 (1975), pp. 727.CrossRefGoogle Scholar
McAloon, K., Completeness theorems, incompleteness theorems and models of arithmetic . Transactions of the American Mathematical Society, vol. 239 (1978), pp. 253277.CrossRefGoogle Scholar
Odifreddi, P. G., Classical Recursion Theory, Studies in Logic and the Foundations of Mathematics, vol. 125, North-Holland, Amsterdam, 1989.Google Scholar
Robinson, A., Non standard arithmetic and generic arithmetic , Logic, Methodology and Philosophy of Science IV (Suppes, P. et al. , editors), North-Holland, Amsterdam, 1974, pp. 137154.Google Scholar
Simmons, H., Existentially closed structures, this Journal, vol. (1972), pp. 293310.
Simmons, H., Existentially closed models of basic number theory , Logic Colloquium 76 (Gandy, R. and Hyland, M., editors), Studies in Logic and the Foundations of Mathematics, vol. 87, North-Holland, Amsterdam, 1977, pp. 325369.Google Scholar
Wilkie, A. J. and Paris, J. B., On the scheme of induction for bounded arithmetic formulas . Annals of Pure and Applied Logic, vol. 35 (1987), pp. 261302.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 50 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-9fdqb Total loading time: 3.066 Render date: 2020-12-04T14:51:16.089Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Dec 04 2020 13:59:27 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

EXISTENTIALLY CLOSED MODELS IN THE FRAMEWORK OF ARITHMETIC
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

EXISTENTIALLY CLOSED MODELS IN THE FRAMEWORK OF ARITHMETIC
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

EXISTENTIALLY CLOSED MODELS IN THE FRAMEWORK OF ARITHMETIC
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *