[1]
Caicedo, A. E. and Veličković, B.,
*The bounded proper forcing axiom and well orderings of the reals*
. Mathematical Research Letters, vol. 13 (2006), no. 2–3, pp. 393–408.

[2]
Claverie, B. and Schindler, R., *Woodin’s axiom* (*), bounded forcing axioms, and precipitous ideals on *ω*
_{1}, this Journal, vol. 77 (2012), no. 2, pp. 475–498.

[3]
Farah, I. and Larson, P. B.,
*Absoluteness for universally Baire sets and the uncountable. I*
, Set Theory: Recent Trends and Applications (Andretta, A., editor), Quaderni di Matematica, vol. 17, Department of Mathematics, Seconda Universitá di Napoli, Caserta, 2006, pp. 47–92.

[4]
Friedman, S.-D. and Wu, L., Large cardinals and Δ_{1}
*-definablity of the nonstationary ideal*, preprint.

[5]
Friedman, S.-D., Wu, L., and Zdomskyy, L., Δ_{1}
*-definability of the non-stationary ideal at successor cardinals*
. Fundamenta Mathematicae, vol. 229 (2015), no. 3, pp. 231–254.

[6]
Gitman, V., *Ramsey-like cardinals*, this Journal, vol. 76 (2011), no. 2, pp. 519–540.

[7]
Gitman, V. and Welch, P. D., *Ramsey-like cardinals II*, this Journal, vol. 76 (2011), no. 2, pp. 541–560.

[8]
Goldstern, M. and Shelah, S., *The bounded proper forcing axiom*, this Journal, vol. 60 (1995), no. 1, pp. 58–73.

[9]
Holy, P. and Lücke, P.,
*Locally* Σ_{1}
*-definable well-orders of* H(*κ*
^{+}). Fundamenta Mathematicae, vol. 226 (2014), no. 3, pp. 221–236.

[10]
Holy, P. and Lücke, P.,
*Simplest possible locally definable well-orders*
. Fundamenta Mathematicae, vol. 236 (2017), no. 2, pp. 101–139.

[11]
Jech, T., Set Theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[12]
Jech, T., Magidor, M., Mitchell, W. J., and Prikry, K., Precipitous ideals, this Journal, vol. 45 (1980), no. 1, pp. 1–8.

[13]
Jensen, R. and Steel, J. R., *K without the measurable*, this Journal, vol. 78 (2013), no. 3, pp. 708–734.

[14]
Kanamori, A., The Higher Infinite, second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[15]
Larson, P. B., The Stationary Tower, University Lecture Series, vol. 32, American Mathematical Society, Providence, RI, 2004. Notes on a course by Hugh Woodin, W..

[16]
Larson, P. B.,
*Forcing over models of determinacy*
, Handbook of Set Theory (Foreman, M. and Kanamori, A., editors), Springer, Dordrecht, 2010, pp. 2121–2177.

[17]
Larson, P. B.,
*A brief history of determinacy*
, The Handbook of the History of Logic, vol. 6 (Gabbay, D. M., Kanamori, A., and Woods, J., editors), Elsevier, Amsterdam, 2012, pp. 457–507.

[18]
Lücke, P.,
${\rm{\Sigma }}_1^1$
-*definability at uncountable regular cardinals*, this Journal, vol. 77 (2012), no. 3, pp. 1011–1046.
[19]
Lücke, P., Motto Ros, L., and Schlicht, P.,
*The Hurewicz dichotomy for generalized Baire spaces*
. Israel Journal of Mathematics, vol. 216 (2016), no. 2, pp. 973–1022.

[20]
Magidor, M.,
*Precipitous ideals and*
${\bf{\Sigma }}_4^1$
*sets*
. Israel Journal of Mathematics, vol. 35 (1980), no. 1–2, pp. 109–134.
[21]
Mekler, A. and Väänänen, J., *Trees and*
${\rm{\Pi }}_1^1$
-*subsets of*
${}_{}^{{\omega _1}}\omega _1^{}$
, this Journal, vol. 58 (1993), no. 3, pp. 1052–1070.
[22]
Mitchell, W. J. and Steel, J. R., Fine Structure and Iteration Trees, Lecture Notes in Logic, vol. 3, Springer-Verlag, Berlin, 1994.

[23]
Moschovakis, Y. N., Descriptive Set Theory, second ed., Mathematical Surveys and Monographs, vol. 155, American Mathematical Society, Providence, RI, 2009.

[24]
Neeman, I.,
*Optimal proofs of determinacy*
. Bulletin of Symbolic Logic, vol. 1 (1995), no. 3, pp. 327–339.

[25]
Schimmerling, E.,
*A core model toolbox and guide*
, Handbook of Set Theory (Foreman, M. and Kanamori, A., editors), Springer, Dordrecht, 2010, pp. 1685–1751.

[26]
Schindler, R.,
*Semi-proper forcing, remarkable cardinals, and bounded Martin’s maximum*.
Mathematical Logic Quarterly, vol. 50 (2004), no. 6, pp. 527–532.

[27]
Schlicht, P.,
*Thin equivalence relations and inner models*
. Annals of Pure and Applied Logic, vol. 165 (2014), no. 10, pp. 1577–1625.

[28]
Schlicht, P., *Perfect subsets of generalized Baire spaces and long games*, submitted.

[29]
Sharpe, I. and Welch, P. D.,
*Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties*
. Annals of Pure and Applied Logic, vol. 162 (2011), no. 11, pp. 863–902.

[30]
Steel, J. R.,
*Inner models with many Woodin cardinals*
. Annals of Pure and Applied Logic, vol. 65 (1993), no. 2, pp. 185–209.

[31]
Steel, J. R.,
*An outline of inner model theory*
, Handbook of Set Theory (Foreman, M. and Kanamori, A., editors), Springer, Dordrecht, 2010, pp. 1595–1684.

[32]
Steel, J. R., Introduction to iterated ultrapowers. Lecture notes.

[33]
Steel, J. R. and Woodin, W. H.,
*HOD as a core model*
, Ordinal Definability and Recursion Theory. The Cabal Seminar, Volume III (Kechris, A. S., Lowe, B., and Steel, J. R., editors), Lecture Notes in Logic, vol. 43, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2016, pp. 257–348.

[34]
Veličković, B. and Woodin, W. H.,
*Complexity of reals in inner models of set theory*
. Annals of Pure and Applied Logic, vol. 92 (1998), no. 3, pp. 283–295.

[35]
Woodin, W. H., The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruyter Series in Logic and its Applications, vol. 1, Walter de Gruyter & Co., Berlin, 1999.

[36]
Zeman, M., Inner Models and Large Cardinals, de Gruyter Series in Logic and its Applications, vol.5, Walter de Gruyter & Co., Berlin, 2002.