Skip to main content Accessibility help

Tobacco cessation behaviors among a sample of US Navy personnel

  • Matthew T. Hall (a1), Ryan P. Austin (a1), Tai A. Do (a2) and Alec G. Richardson (a3)



The US Navy utilizes numerous resources to encourage smoking cessation. Despite these efforts, cigarette smoking among service members remains high. Electronic cigarettes (EC) have provided an additional cessation resource. Little is known regarding the utilization efficacy of these cessation resources in the US Navy.


This study sought to explore the utilization and efficacy of ECs and other smoking cessation resources.


An anonymous cross-sectional survey was conducted at a military clinic from 2015 to 2016. Participants were active duty in the US Navy and reported demographics, smoking behaviors, and utilization of cessation resources.


Of the 977 participants in the study, 14.9% were current and 39.4% were former smokers. Most current smokers (83.6%) previously attempted cessation, smoked an average of 2–5 cigarettes per day (34.7%), and smoked every day of the month (26.4%). The number of daily cigarettes smoked and number of days cigarettes were smoked per month was not significantly different between cigarette-only smokers and EC dual users (p = 0.92, p = 0.75, respectively). Resources used by current and former smokers include: ‘cold turkey’ (44.6%, 57.1%, respectively), ECs (22.3%, 24.7%), nicotine patch (8.3%, 1.3%), medicine (6.6%, 3.9%), nicotine gum (5.8%, 10.4%), and quit programs (2.5%, 2.6).


Current and former cigarette smokers utilized similar resources to quit smoking. Electronic cigarettes are being used for cessation but do not significantly reduce the number of cigarettes smoked on a daily or monthly basis. Future studies may benefit from exploring the use of cessation resources and ECs within the military as a whole.


Corresponding author

Author for correspondence: Matthew T. Hall, E-mail:


Hide All
Amato, M. S., Boyle, R. G., & Levy, D. (2016). How to define e-cigarette prevalence? Finding clues in the use frequency distribution. Tobacco Control, 25(e1), e24–29. doi:10.1136/tobaccocontrol-2015-052236
Ames, G. M., Cunradi, C. B., & Moore, R. S. (2002). Alcohol, tobacco, and drug use among young adults prior to entering the military. Prevention Science, 3(2), 135144.
Bartlett, M. S. (1937a). Properties of sufficiency and statistical tests. Proceedings of the Royal Statistical Society Series A, 160(901), 268282.
Bartlett, M. S. (1937b). Some examples of statistical methods of research in agriculture and applied biology. Journal of Royal Statistical Society, 4(2), 137170.
Bray, R. M., & Hourani, L. L. (2007). Substance use trends among active duty military personnel: Findings from the United States department of defense health related behavior surveys, 1980-2005. Addiction, 102(7), 10921101.
Centers for Disease Control and, Prevention, Brener, N. D., Kann, L., Shanklin, S., Kinchen, S., Eaton, D. K., Hawkins, J. et al. (2013). Methodology of the youth risk behavior surveillance system--2013. MMWR. Recommendations and Reports, 62(RR-1), 120.
Collee, A., Clarys, P., Geeraerts, P., Dugauquier, C., & Mullie, P. (2014). Body mass index, physical activity, and smoking in relation to military readiness. Military Medicine, 179(8), 901905.
Cypel, Y. S., Hamlett-Berry, K., Barth, S. K., Christofferson, D. E., Davey, V. J., Eber, S. et al. (2016). Cigarette smoking and sociodemographic, military, and health characteristics of operation enduring freedom and operation Iraqi freedom veterans: 2009-2011 national health study for a New generation of US veterans. Public Health Reports, 131(5), 714727.
Duncan, D. B. (1951). A significance test for difference between ranked treatments in an analysis of variance. Virginia Journal of Science, 2(3), 171189.
Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 142.
Haddock, C. K., Klesges, R. C., Talcott, G. W., Lando, H., & Stein, R. J. (1998). Smoking prevalence and risk factors for smoking in a population of United States Air Force basic trainees. Tobacco Control, 7(3), 232235.
Haddock, C. K., Pyle, S. A., Poston, W. S., Bray, R. M., & Stein, R. J. (2007). Smoking and body weight as markers of fitness for duty among U.S. military personnel. Military Medicine, 172(5), 527532.
Institute of Medicine (US) Committee on Smoking Cessation in Military and Veteran Populations; Bondurant, S., & Wedge, R. (Eds). (2009). Combating tobacco Use in military and veteran populations (Vol. 2). Washington, DC: National Academies Press.
Kalkhoran, S., & Glantz, S. A. (2016). E-cigarettes and smoking cessation in real-world and clinical settings: A systematic review and meta-analysis. The Lancet Respiratory Medicine, 4(2), 116128.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion analysis of variance. Journal of the American Statistical Association, 47(260), 583621.
MacIntyre, N. R., Mitchell, R. E., Oberman, A., Harlan, W. R., Graybiel, A. and Johnson, E. (1978). Longevity in military pilots: 37-year followup of the Navy's “1000 aviators”. Aviation, Space and Environmental Medicine, 49(9), 11201122.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 5060.
Meadows, S. O., Engel, C. C., Collins, R. L., Beckman, R., Cefalu, M., Hawes-Dawson, J. et al. (2018). 2015 department of Defense Health Related Behaviors Survey (HRBS). Retrieved from Santa Monica, California.
Navy, D. o. t. (2012). Bumed instruction 6200.12a. (BUMED-M3). Falls Church, VA: Department of the Navy.
Newman, D. (1939). The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation. Biometrika, 31(1–2), 2030.
Scheffe, H. (1953). A method of judging all contrasts in the analysis of variance. Biometricka, 40(1–2), 87110.
Scheffe, H. (1959). The analysis of variance. New York: Wiley.
Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Moscow University Mathematics Bulletin, 2(2), 316.
Smith, E. A., Jahnke, S. A., Poston, W. S., Williams, L. N., Haddock, C. K., Schroeder, S. A., & Malone, R. E. (2014). Is it time for a tobacco-free military? New England Journal of Medicine, 371(7), 589591.
Smith, E. A., Poston, W. S., Haddock, C. K., & Malone, R. E. (2016). Installation Tobacco Control Programs in the U.S. Military. Military Medicine, 181(6), 596601.
Tukey, J. W. (1949). One degree of freedom for non-additivity. Biometrics, 5(3), 232242.
Tukey, J. W. (1953). The problem of multiple comparisons. Princeton, NJ: Department of Statistics, Princeton University.
Walley, S. C., Jenssen, B. P., & Section on Tobacco, C. (2015). Electronic nicotine delivery systems. Pediatrics, 136(5), 10181026.
York, E., Mitchell, R. E., & Graybiel, A. (1986). Cardiovascular epidemiology, exercise, and health: 40-year followup of the U.S. Navy's “1000 aviators”. Aviation, Space and Environmental Medicine, 57(6), 597599.
Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River, NJ: Prentice Hall.


Tobacco cessation behaviors among a sample of US Navy personnel

  • Matthew T. Hall (a1), Ryan P. Austin (a1), Tai A. Do (a2) and Alec G. Richardson (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed