We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send this article to your account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to compare intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) regarding plan quality and healthy lung sparing, in stage III non-small cell lung cancer (NSCLC) patients.
Materials and methods
The plans of 60 patients were allocated either to the IMRT (n=30) or the VMAT (n=30) group. The dose prescribed to the planning target volume (PTV) was evaluated at the 95% level and the mean lung dose (MLD) and the healthy lung receiving 5, 10 and 20 Gy (V5, V10 and V20, respectively) were analysed. The normal tissue complication probability (NTCP) for radiation pneumonitis was calculated with the Lyman–Kutcher–Burman model.
Results
Both techniques achieved comparable results for target coverage (V95%=97·87 versus 97·18%, p>0·05) and homogeneity. The MLD (15·57 versus 16·98 Gy, p>0·05), V5 (60·35 versus 67·25%, p>0·05) and V10 (45·22 versus 53·14%, p=0·011) were lower for IMRT, whereas VMAT reduced V20 (26·44 versus 25·90%, p>0·05). The NTCP for radiation pneumonitis was higher for VMAT, but no statistical significance was observed (11·07 versus 12·75, p>0·05).
Conclusion
Both techniques seemed suitable for NSCLC treatment, but IMRT presented better results regarding lung sparing thus being beneficial in reducing the risk of radiation-induced pneumonitis.
Accurate and reproducible patient positioning is a critical step in radiotherapy for breast cancer. This has seen the use of permanent skin markings becoming standard practice in many centres. Permanent skin markings may have a negative impact on long-term cosmetic outcome, which may in turn, have psychological implications in terms of body image. The aim of this study was to investigate the feasibility of using a semi-permanent tattooing device for the administration of skin marks for breast radiotherapy set-up.
Materials and methods
This was designed as a phase II double-blinded randomised-controlled study comparing our standard permanent tattoos with the Precision Plus Micropigmentation (PPMS) device method. Patients referred for radical breast radiotherapy were eligible for the study. Each study participant had three marks applied using a randomised combination of the standard permanent and PPMS methods and was blinded to the type of each mark. Follow up was at routine appointments until 24 months post radiotherapy. Participants and a blind assessor were invited to score the visibility of each tattoo at each follow-up using a Visual Analogue Scale. Tattoo scores at each time point and change in tattoo scores at 24 months were analysed by a general linear model using the patient as a fixed effect and the type of tattoo (standard or research) as covariate. A simple questionnaire was used to assess radiographer feedback on using the PPMS.
Results
In total, 60 patients were recruited to the study, of which 55 were available for follow-up at 24 months. Semi-permanent tattoos were more visible at 24 months than the permanent tattoos. Semi-permanent tattoos demonstrated a greater degree of fade than the permanent tattoos at 24 months (final time point) post completion of radiotherapy. This was not statistically significant, although it was more apparent for the patient scores (p=0·071) than the blind assessor scores (p=0·27). No semi-permanent tattoos required re-marking before the end of radiotherapy and no adverse skin reactions were observed.
Conclusion
The PPMS presents a safe and feasible alternative to our permanent tattooing method. An extended period of follow-up is required to fully assess the extent of semi-permanent tattoo fade.
The aim of the study was to assess the effect on rectal consistency, of introducing a micro-enema in the preparation of patients receiving radiotherapy treatment of urinary bladder cancer.
Materials and methods
The treatment cone beam computed tomography (CBCT) images from patients receiving radiotherapy for bladder cancer were retrospectively assessed. CBCT datasets from nine patients treated without rectal preparation (97 CBCT), and 13 patients (134 CBCT) treated following micro-enema use before planning and treatment were evaluated. CBCT were compared with the planning computed tomography for rectal status, rectal diameter and presence of gas.
Results
Reproducibility of an empty rectum was achieved in 70% of treatment fractions delivered using an enema protocol compared with 33% of fractions delivered without preparation. In total, 10% of fractions were delivered with the presence of faeces or faeces and gas, compared with 46% of fractions for the non-intervention group. Enemas did not affect the proportion of fractions delivered with gas, however, where gas was present, 65% of CBCT fractions had <5% gas for patients using enemas compared with 32% without.
Findings
The use of a micro-enema before planning scan and each fraction was well tolerated and proved effective in managing and reducing inter-fraction variations in rectal volume and contents.
Although manual adjustment of automatic cone beam computed tomography (CBCT) matching may improve the target coverage in certain points of interest, concerns exist that this may lead to dosimetric uncertainties which would negate the theoretical benefit of this approach. The objective of this study is to evaluate the dosimetric impact of manual adjustments made after automatic bony registration on CBCT in prostate patients.
Methods
A total of 50 CBCT datasets of ten high-risk prostate cancer patients were randomly chosen. Each CBCT dataset was registered three times. Method (A): Automatic registration, Method (M1): Manual adjustment carried out by two experienced radiation therapists, Method (M2): Manual adjustment carried out by different radiation therapists with varying levels of experience. The clinical target volume (CTV), planning target volume (PTV), the bladder and the rectum were subsequently contoured on each CBCT dataset by a radiation oncologist blinded to the registration methods. The absolute difference of various dosimetric parameters were then analysed and compared with the original planning doses. A comparison of the three matching methods employed was also carried out.
Results
There was a statistically significant difference in the magnitude of move taken in the inferior superior direction between M1 and M2 method. There were no significant differences observed in any of the dosimetric parameters examined in relation to the rectum, bladder or CTV. The only significant difference observed was the volume of PTV covered by the prescription isodose (95%) which was statistically significant lower in method A compared with both M1 and M2. There was no difference observed between M1 and M2 methods. The mean duration of the automated registration and subsequent analysis was 64 seconds compared with 91 seconds for automated registrations which included the additional manual adjustment.
Findings
CBCT-based manual adjustments of automated bony-based registrations during the image-guided radiotherapy verification of prostate cancer patients can improve PTV coverage without impacting negatively on the doses received by the organs at risk. This strategy is associated with a small increase in overall treatment time.
To determine the outcome of patients with locally advanced cervix cancer treated with curative intent using external beam radiotherapy (EBRT), without brachytherapy.
Materials and methods
A chart review was performed of all patients with cervix cancer who received EBRT alone at our centre from 2000 to 2010. Overall survival and local control were evaluated using Kaplan–Meier survival curves.
Results
In total, 22 patients were identified. The median age and follow-up were 56 years and 65 months, respectively. The stage included IB to IVB. Main histology was squamous cell carcinoma (82%). Median tumour size was 5·5 cm. Majority treated with 3D conformal techniques and nine patients (41%) were treated with intensity-modulated radiation therapy (IMRT); 14 patients received doses of ≥65 Gy. Most patients (73%) received weekly concurrent cis-platinum. The major reason for not receiving brachytherapy was locally extensive tumour (59%). The 5-year relapse-free survival and overall survival rates were 57 and 50%, respectively. Seven patients (32%) had a component of loco-regional failure, mainly within the cervix. There was a better outcome among the nine patients treated with IMRT to a median dose of 66 Gy with a loco-regional control of 78%.
Conclusions
Patients who cannot have brachytherapy may still achieve acceptable rates of loco-regional disease control if high radiation doses (>65 Gy) was delivered.
Electronic portal imaging device (EPID) offers high-resolution digital image that can be compared with a predicted portal dose image. A very common method to quantitatively compare a measured and calculated dose distribution that is routinely used for quality assurance (QA) of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy treatment plans is the evaluation of the gamma index. The purpose of this work was to evaluate the gamma passing rate (%GP), maximum gamma (γmax), average gamma (γave), maximum dose difference (DDmax) and the average dose difference (DDave) for various regions of interest using Varian’s implementation of three absolute dose gamma calculation techniques of improved, local, and combined improved and local.
Methods and materials
We analyzed 232 portal dose images from 100 prostate cancer patients’ VMAT plans obtained using the Varian EPID on TrueBeam Linacs.
Results
Our data show that the %GP, γmax and γave depend on the gamma calculation method and the acceptance criteria. Higher %GP values were obtained compared with both our current institutional action level and the American Association of Physicists in Medicine Task Group 119 recommendations.
Conclusions
The results of this study can be used to establish stricter action levels for pre-treatment QA of prostate VMAT plans. A stricter 3%/3 mm improved gamma criterion with a passing rate of 97% or the 2%/2 mm improved gamma criterion with a passing rate of 95% can be achieved without additional measurements or configurations.
In non-melanoma skin cancer—that is, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)—brachytherapy treatment is preferred over surgical excision because of cosmetic reasons, acceptability and preference of patients.
Material and methods
Moulds are prepared of wax to match the size of the lesion. This represents the area to be considered in treatment planning. A total of 85 patients who had either SCC or BCC were treated, and all these patients were classified on the basis of age, gender and origin.
Results
Patients were treated with 39 Gy in 13 fractions (biological effective dose=50·7 Gy). In 52 BCC patients, treatment achieved excellent cosmetic results in 49 cases, with 17 of these patients experiencing Grade-1 skin reactions related to treatment in the first 24 weeks of follow-up. A single patient experienced Grade-II hyper-pigmentation reaction in the third week. In 33 SCC patients, treatment achieved excellent cosmetic results in 28 cases, with 17 of these patients experiencing Grade-I reaction in the first 36 weeks after treatment. Among the remaining four patients, only one developed Grade-II hypo-pigmentation and one patient experienced tumour recurrence near the primary site. The overall outcome efficacy of the treatment was 98·8%.
Findings
The treatment outcome not only enhances our confidence in brachytherapy but also improves the patient’s satisfaction regarding cosmetic results and curative output achieved by avoiding a surgical procedure for non-melanoma skin cancers.
In developing countries like Pakistan the cost effectiveness and patient convenience in any treatment modality is a question of major concern. The purpose of this study was two-fold; first to report our experience with a high-dose rate Iridium-192 surface mould brachytherapy of keloid scars after surgical excision, using different radiation treatment regimen and second to establish the most convenient and cost effective treatment protocol having no compromise on the treatment outcomes.
Materials and methods
From January 2012 to April 2015 a total 51 patients with 65 keloid lesions underwent postoperative Iridium-192 high-dose rate surface mould brachytherapy. The dose regimen used was: 8 Gy in a single fraction, 10 Gy in a single fraction, 15 Gy in three fractions and 18 Gy in three fractions. The median follow-up period was 33 months (range 15–53 months).
Results
The success rates were 57·2, 89·5, 85 and 89·5% for the treatment regimen of 8 Gy/F×1, 10 Gy/F×1, 5 Gy/F×3 and 6 Gy/F×3, respectively. Grade 2 or above radiation induced toxicity was not observed.
Findings
The results of this study show that a dose regimen of 10 Gy (biological effective dose=20 Gy) in a single fraction have comparable results with a dose regimen of 15 Gy in three fractions or 18 Gy in three fractions. 10 Gy in a single fraction is therefore the most convenient and cost effective dose regimen for the management of keloid scars in developing countries like Pakistan, while 8 Gy in a single fraction is considered suboptimal and discouraged in practice.
Due to the increased degree of modulation and complexity of volumetric-modulated arc therapy (VMAT) plans, it is necessary to have a pre-treatment patient-specific quality assurance (QA) programme. The gamma index is commonly used to quantitatively compare two dose distributions. In this study we investigated the sensitivity of single- and multi-gamma criteria techniques to detect multileaf collimator (MLC) positioning errors using the Varian TrueBeam Electronic Portal Imaging DeviceTM (EPID) dosimetry and the ArcCHECKTM device.
Materials and methods
All active MLC positions of seven intact prostate patients VMAT plans were randomly changed with a mean value of 0.25, 0.5, 1 and 2 mm and a standard deviation of 0.1 mm on 25, 50, 75 and 100% of the control points. The change in gamma passing rates of six gamma criteria of 3%/3 mm, 3%/2 mm, 3%/1 mm, 2%/2 mm, 2%/1 mm and 1%/1 mm were analysed individually (single-gamma criterion) and as a group (multi-gamma criteria) as a function of the simulated errors. We used the improved and global gamma calculation algorithms with a low dose threshold of 10% in the EPID and ArcCHECK software, respectively. The changes in the planning target volume dose distributions and the organs at risk due to the MLC positioning errors were also studied.
Results
When 25, 50, 75 and 100% of the control points were modified by the introduction of the simulated errors, the smallest detectable errors with the EPID were 2, 1, 0.5 and 0.5 mm, respectively, using the multi-gamma criteria technique. Similarly for the single-gamma criteria technique errors as small as 2, 1, 1 and 1 mm applied to 25, 50, 75 and 100% of the control points, respectively, were detectable using a 2%/2 mm criterion. However, the smallest detectable errors with the ArcCHECK when using the multi-gamma criteria technique were 2, 2 and 1 mm when MLC errors were applied on 50, 75 and 100% of the control points. When only 25% of the control points were affected the ArcCHECK were unable to detect any of the errors applied. No noticeable difference was observed in the sensitivity using the single- or the multi-gamma criteria techniques with the ArcCHECK.
Conclusion
The Varian TrueBeam EPID dosimetry shows a higher sensitivity in detecting MLC positioning errors compared with the ArcCHECK regardless of using the single- or the multi-gamma criteria techniques. Higher sensitivity was observed using the multi-gamma criteria technique compared with the single-criterion technique when using the EPID.
The aim of this study is to review the results of applying a hypofractionated radiotherapy schedule for locally advanced inoperable lung cancer in patients who have received chemotherapy. Lung cancer and especially non-small-cell lung cancer is prone to accelerated repopulation and shorter treatment schedules in the form of accelerated radiotherapy have been shown to improve treatment outcome.
Patients – method
In total, 29 patients with inoperable lung cancer (stage II, IIIa,b, IV) were treated with accelerated hypofractionated 3D conformal radiotherapy. All patients received a dose of 55 Gy in 20 fractions (daily dose of 2·75 Gy). The median age was 65·5 years, 87% of patients had stage III–IV disease, 93% of patients received sequential chemotherapy with their radiotherapy. Median follow-up of patients was 36 months.
Results
The median overall survival from time of diagnosis was 16·5 months and the 1 year overall survival was 31%. Complications were present in 44·8% of the patients and the most common complication (20·7%) was pneumonitis alone. The complication rate was not significantly different according to histological type, stage, type of chemotherapy, presence of recurrence or death.
Conclusion
Although our study limitation is the small number of patients, these data suggest that the efficacy of this hypofractionated schedule could be considered as alternative option to the conventional regimen of 66 Gy given in 33 fractions.
This study aimed to examine the dosimetric properties of Gafchromic® EBT3 film and intensity-modulated radiation therapy quality assurance (IMRT QA).
Materials and methods
Beams characteristics dosimetric properties and 20 IMRT plans were created and irradiated on Varian dual-energy DHX-S Linac for 6 and 15 MV energies. EBT3 films were analysed using ‘film Pro QA 2014’ software.
Results
The dosimetric comparison of EBT3 film (for red channel dosimetry) and ionisation ion chamber measurement showed that average deviations of symmetry, flatness, central axis, penumbra (left) and penumbra (right) of dose profile were 0·18, 1·34, 0·49%, 3·68 and 3·61 mm for 6 MV and 0·10, 1·3, 0·45, 2·65 and 2·71 mm for 15 MV, respectively. The blue and green channels dosimetry showed greater dose deviation as compared with red channel. IMRT QA verification plan complied about 95% at all different criteria. Reproducibility, stability and face orientation of film were within 1·4% for red channel.
Conclusions
The results advocate that the film can be used not only for dosimetric assessment but also as a reliable IMRT QA tool.
Whole-breast external beam radiotherapy results in significant reduction in the risk for breast cancer-related death, but this may be offset by an increase in deaths from other causes and toxicity to surrounding organs. Partial breast irradiation techniques are approaches that treat only the lumpectomy area rather than the whole breast. Quality assurance in the radiation therapy treatment planning process is essential to ensure accurate dose delivery to the patient. For this purpose, this article compares the results from an anthropomorphic PRESAGE® dosimeter, radiation treatment planning system and from the GAFCHROMIC® EBT2 film.
Materials and methods
A breast dosimeter was created and a three-field partial plan was generated in the Pinnacle3 treatment planning system. Dose distribution comparisons were made between Pinnacle3 treatment planning system, GAFCHROMIC® EBT2 film and PRESAGE® dosimeter. Dose–volume histograms (DVHs), gamma maps and line profiles were used to evaluate the comparison.
Results
DVHs of gross tumour volume, clinical tumour volume and planning tumour volume for the PRESAGE® dosimeter and Pinnacle3 treatment planning system shows that both measured and calculated statistics were in agreement, with a value of 97.8% of the prescribed dose. Gamma map comparisons showed that all three distributions passed 95% at the ±3%/±3 mm criteria. Comparisons of isodose line distribution between the PRESAGE® dosimeter, EBT2 film and planning system demonstrated agreement, with an average difference of 1.5%.
Conclusions
This work demonstrated the feasibility of PRESAGE® to function as an anthropomorphic phantom and laid the foundation for research studies in PRESAGE®/optical-computed tomography three-dimensional dosimetry with the most complex anthropomorphic phantoms.
To examine and quantify set-up errors in patient positioning in head-and-neck radiotherapy and to investigate the impact of the choice of reference isocentre—on the patient neck or patient skull—on the magnitude of set-up errors.
Materials and methods
Set-up position corrections obtained using online kV 2D/2D matching were recorded automatically for every treatment fraction. 3,413 treatment records for 117 patients treated with volumetric modulated arc therapy during 2013 and 2014 on a single treatment machine in our clinic were analysed. In 79 treatment plans the reference isocentre was set to the patient skull, and in 47 to the neck.
Results
Standard deviation of group systematic error in the vertical, longitudinal and lateral direction and the couch rotation were found to be 2·5 mm, 2·1 mm, 1·9 mm and 0·43° (skull) and 2·5 mm, 1·8 mm, 1·7 mm and 0·49° (neck), respectively. Random error of the vertical, longitudinal, lateral and rotational position correction was 1·8 mm, 1·5 mm, 1·6 mm and 0·62° (skull) and 1·9 mm, 1·6 mm, 1·5 mm and 0·60° (neck), respectively. Positional shifts in different directions were found to be uncorrelated.
Conclusions
Neither reference isocentre set-up shows a clear advantage over the other in terms of interfraction set-up error.
To characterise small photon beams using the Monte Carlo dose calculation algorithm for small field ranges in a heterogeneous medium.
Materials and method
An in-house phantom constructed with three different mediums, foam, polymethyl methacrylate and delrin resembling the densities of lung, soft tissue and bone respectively, was used in this study. Photon beam energies of 6 and 15 MV and field sizes of 8×8, 16×16, 24×24, 32×32 and 40×40 mm using X-ray voxel Monte Carlo (XVMC) algorithm using different detectors were validated. The relative output factor was measured in three different mediums having six different tissue interfaces; at the depth of 0, 1, 2 and 3 cm. The planar dose verification was undertaken using gafchromic films and considered dose at the lung and bone medium interfaces. For all the measurements, 104×104 mm was taken as the reference field size. The relative output factor for all other field sizes was taken and compared with planning system calculated values.
Results
From field size 16×16 mm and above, the relative output factors were analysed in bone and soft tissue medium having lung as first medium. The maximum deviations were observed as 1·8 and 1·3% for 6 MV and 2·5 and 1·1% for 15 MV photon beams for bone and soft tissue, respectively. For lung as measurement medium, the maximum deviation of 14·8 and 19·2% were observed and having bone as first medium with 8×8 mm for 6 and 15 MV photon beams, respectively. The fluence verification of dose spectrum for the lung–bone interface scenarios with smaller field sizes were found within 2% of deviation with treatment planning system (TPS).
Conclusion
The accuracy of dose calculations for small field sizes in XVMC-based treatment planning algorithm was studied in different inhomogeneous mediums. It was found that the results correlated with measurement data for field size 16×16 mm and above. Noticeable deviation was observed for the smallest field size of 8×8 mm with interfaces of significant change in density. The observed results demands further analysis of work with smaller field sizes.
This study aims to clarify the influence of overall treatment time (OTT) on the efficiency of combined chemo-radiotherapy in cervical cancer.
Material and methods
This retrospective study enrolled 122 cervical cancer patients who had squamous cell carcinoma and had undergone definitive chemo-radiotherapy from 2009 to 2013. All patients received whole pelvic radiotherapy (WPRT) with the dose of 50 Gy in 25 fractions (with central shielding after 44 Gy) plus intracavitary brachytherapy with the dose of 28 Gy in four fractions. During WPRT, all patients received concurrent chemotherapy with weekly platinum-based regimen. The data of patient characteristics, OTT, treatment results and toxicities were collected and evaluated.
Results
The mean follow-up time was 36 months. The mean age of patients was 52 years old; 68% of patients were stage IIB related to International Federation of Gynaecology and Obstetrics staging. Pelvic control (PC), distant metastasis-free survival (DMFS), disease-free survival (DFS) and overall survival (OS) rates did not differ significantly in the data-derived cut points of 55·8 and 53 days. No statistically significant difference in treatment results between the two groups of OTT<49 and OTT≥62 days was observed.
Conclusions
In our data-derived cut point, OTT did not influence to PC, DMFS, DFS and OS. The influence of OTT on treatment results may be found in longer periods.
18Fluorodeoxyglucose-positron emission tomography (FDG-PET) can indicate the presence or absence of non-small-cell lung cancer (NSCLC) after treatment. We present a description of the FDG-PET results following the contemporary management of locally advanced NSCLC including long-term outcomes.
Methodology
The study participants were eight long-term survivors with metabolic tumour response (MTR) shown on FDG-PET following chemoradiotherapy for locally advanced stage NSCLC between June 2005 and April 2009.
Results
After therapy, MTR was complete in five patients; four subjects were free of cancer, and one patient experienced progression of disease at the time of last follow-up. Of the three individuals with incomplete MTRs, distant metastases developed in two patients, and one subject remained disease-free. Long-term survival ranged from 37 to 75 months.
Conclusion
Although the number of cases is small, our observations confirm the diagnostic role of FDG-PET as well as its value for predicting prognosis in the clinical practice of oncology.