Skip to main content Accessibility help
×
Home

Radiation dose distribution under the area protected using a Cerrobend block during external beam radiotherapy: a film study

  • Mohammad Mohammadi (a1) (a2), Amir Taherkhani (a3) (a4) and Mohmmadsaeed Saboori (a5)

Abstract

Background

In radiation therapy, to spare normal surrounding tissues, either Multileaf Collimators or Cerrobend blocks are used.

Purpose

The current study focuses on the relative dose distribution under the areas protected by Cerrobend blocks.

Materials and methods

A dual-energy linear accelerator and a Cobalt-60 machine were utilised as radiation sources. Several blocks were designed using commercially available materials to shield radiation fields. The relative dose distribution was then evaluated using extended dose range 2 films.

Results

Results showed that the dose distribution under protected areas depends on several parameters including the width and height of protecting blocks, incident photon beam energy, radiation field size and source to surface distance. An increase in Cerrobend block height from 80 to 95 mm significantly decreases the dose at the protected areas.

Conclusion

An increase in the block width and photon energy decreases the relative dose deposition at the protected area. However, electron and neutron contaminations should also be taken into consideration.

Copyright

Corresponding author

Correspondence to: Mohammad Mohammadi, Department of Medical Physics, Faculty of Medicine, Hamadan University of Medical Sciences, 65178-38678 Hamadan, Iran. Tel: +98 8381037; Fax: +98 8381017. E-mail: Mohammadi@umsha.ac.ir

References

Hide All
1. Boyer, A, Ochran, T, Nyerick, C, Waldron, T, Huntzinger, C. Clinical dosimetry for implementation of a multileaf collimator. Med Phys 1992; 19 (5): 12551261.
2. Cheng, C, Wong, J, Ndlovu, A, Das, I, Schiff, P, Uematsu, M. Dosimetric evaluation and clinical application of virtual mini-multileaf collimator. Am J Clin Oncol 2003; 26 (3): e37e44.
3. Palta, J, Yeung, D, Frouhar, V. Dosimetric consideration for a multileaf collimator system. Med Phys 1996; 23 (7): 12191224.
4. Stasi, M, Baiotto, B, Palamara, F, Gabriele, P, Scielzo, G. Dosimetric characterization of a multileaf collimator. Radiol Med (Torino) 1999; 97 (5): 382388.
5. AAPM Radiation Therapy Committee and Boyer A. Basic Application of Multileaf Collimators, Task Group 50. American Association of Physicists in Medicine (AAPM) 2001.
6. Dawson, J, Kahler, D, McDonald, B, Kopecky, W, Gu, J. Surface and percentage depth doses for secondary blocking using a multileaf collimator and cerrobend-alloy blocks. Radiother Oncol 1997; 42 (3): 285288.
7. Rieger, J, Mehta, M, Paliwal, B, Kubsad, S. Weight consideration in the use of cerrobend beam blocks. Med Dosim 1992; 17 (3): 141143.
8. Khan, F M. The physics of radiation therapy, 3rd edition. Philadelphia: Lippincott Williams & Wilkins, 1993.
9. Taherkhani, A, Mohammadi, M, Saboori, M, Changizi, V. Evaluation of the physical characteristic of Cerrobend blocks used for radiation therapy. Int J Radiat Res 2010; 8 (2): 93101.
10. Galvin, J M, Smith, A R, Lally, B. Characterization of a multi-leaf collimator system. Int J Radiat Oncol Biol Phys 1993; 25 (2): 181192.
11. Jordan, T, Williams, P. The design and performance characteristics of a multileaf collimator. Phys Med Biol 1994; 39 (2): 231251.
12. Butson, M, Yu, P, Cheung, T. Rounded end multi-leaf penumbral measurements with radiochromic film. Phys Med Biol 2003; 48 (17): N247N252.
13. Klein, E, Low, D. Interleaf leakage for 5 and 10 mm dynamic multileaf collimation systems incorporating patient motion. Med Phys 2001; 28 (8): 17031710.
14. Chow, L, Seguin, M, Alexander, A. Dosimetric effect of collimating jaws for small multileaf collimated fields. Med Phys 2005; 32 (3): 759765.
15. Huq, M S, Yu, Y, Chen, Z P, Suntharalingam, N. Dosimetric characteristics of a commercial multileaf collimator. Med Phys 1995; 22 (2): 241247.
16. Klein, E, Harms, W, Low, D, Willcut, V, Purdy, J. Clinical implementation of a commercial multileaf collimator: dosimetry, networking, simulation, and quality assurance. Int J Radiat Oncol Biol Phys 1995; 33 (5): 11951208.
17. Huq, M S, Das, I J, Steinberg, T, Galvin, J M. A dosimetric comparison of various multileaf collimators. Phys Med Biol 2002; 47 (12): N159N170.
18. Balog, J P, Mackie, T R, Wenman, D L, Glass, M, Fang, G, Pearson, D. Multileaf collimator interleaf transmission. Med Phys 1999; 26 (2): 176186.
19. Pasquino, M, Casanova Borca, V, Tofani, S. Physical-dosimetric characterization of a multi-leaf collimator system for clinical implementation in conformational radiotherapy. Radiol Med (Torino) 2001; 101 (3): 187192.
20. Zhu, Y, Boyer, A L, Desobry, G E. Dose distributions of x-ray fields as shaped with multileaf collimators. Phys Med Biol 1992; 37 (1): 163174.
21. Galvin, J M, Leavitt, D D, Smith, A A. Field edge smoothing for multileaf collimators. Int J Radiat Oncol Biol Phys 1996; 35 (1): 8994.
22. Stasi, M, Baiotto, B, Palamara, F, Gabriele, P, Scielzo, G. Effective penumbra and scalloping effect: a dosimetric study in multifield radiotherapy with multileaf collimator for prostate cancer treatment. Tumori 2001; 87 (1): 3035.
23. Cheng, C W, Das, I J, Steinberg, T. Role of multileaf collimator in replacing shielding blocks in radiation therapy. Int J Cancer 2001; 96 (6): 385395.
24. Hogstrom, K R, Boyd, R A, Antolak, J A, Svatos, M M, Faddegon, B A, Rosenman, J G. Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy. Med Phys 2004; 31 (3): 443462.
25. Liu, Y, Shi, C, Tynan, P, Papanikolaou, N. Dosimetric characteristics of dual-layer multileaf collimation for small-field and intensity-modulated radiation therapy applications. J Appl Clin Med Phys 2008; 9 (2): 2709.
26. Xu, M M, Sethi, A, Glasgow, G P. Dosimetry of small circular fields for 6-MeV electron beams. Med Dosim 2009; 34 (1): 5156.
27. Frazier, A, Du, M, Wong, J, et al. Dosimetric evaluation of the conformation of the multileaf collimator to irregularly shaped fields. Int J Radiat Oncol Biol Phys 1995; 33 (5): 12291238.
28. Wojcicka, J B, Yankelevich, R, Werner, B L, Lasher, D E. Technical note: on cerrobend shielding for 18-22 MeV electron beams. Med Phys 2008; 35 (10): 46254629.
29. Steel, J, Stewart, A, Satory, P. Matching extended-SSD electron beams to multileaf collimated photon beams in the treatment of head and neck cancer. Med Phys 2009; 36 (9): 42444249.
30. Arunkumar, T, Supe, SS, Ravikumar, M, Sathiyan, S, Ganesh, M. Electron beam characteristics at extended source-to-surface distances for irregular cut-outs. J Med Phys 2010; 35 (4): 207214.
31. Khaledy, N, Arbabi, A, Sardari, D. The effects of cutouts on output, mean energy and percentage depth dose of 12 and 14 MeV electrons. J Med Phys 2011; 36 (4): 213219.
32. Brualla, L, Zaragoza, F J, Sempau, J, Wittig, A, Sauerwein, W. Electron irradiation of conjunctival lymphoma-Monte Carlo simulation of the minute dose distribution and technique optimization. Int J Radiat Oncol Biol Phys 2012; 83 (4): 13301337.
33. Blackwell, C R, Amundson, K D. Cadmium free lead alloy for reusable radiotherapy shielding. Med Dosim 1990; 15 (3): 127129.
34. Dogan, N, Leybovich, L B, Sethi, A. Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy. Phys Med Biol 2002; 47 (22): 41214130.
35. Gerbi, B J, Dimitroyannis, D A. The response of Kodak EDR2 film in high-energy electron beams. Med Phys 2003; 30 (10): 27032705.
36. Zhu, X, Jursinic, P, Grimm, D, Lopez, F, Rownd, J, Gillin, M. Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator. Med Phys 2002; 29 (8): 16871692.
37. Mohammadi, M, Bezak, E, Reich, P. The use of extended dose range film for dosimetric calibration of a scanning liquid-filled ionization chamber electronic portal imaging device. J Appl Clin Med Phys 2007; 8 (1): 6984.
38. Devic, S, Seuntjens, J, Shanm, E, et al. Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys 2005; 32 (7): 22452253.
39. Bucciolini, M, Buonamici, F, Casati, M. Verification of IMRT fields by film dosimetry. Med Phys 2004; 31 (1): 161168.
40. Esthappan, J, Mutic, S, Harms, W B, Dempsey, J F, Low, D A. Dosimetry of therapeutic photon beams using an extended dose range film. Med Phys 2002; 29 (10): 24382445.
41. Burch, S, Kearfott, K, Trueblood, J, Sheils, W, Yoe, J, Wang, C. A new approach to film dosimetry for high energy photon beams: lateral scatter filtering. Med Phys 1997; 24 (5): 83775.
42. IEC, IEC 60976: Medical electron accelerators-functional performance characteristics, International Electromechanical Commisions. IEC publication 967. Geneva: International Electromechanical Commisions, 1989.

Keywords

Related content

Powered by UNSILO

Radiation dose distribution under the area protected using a Cerrobend block during external beam radiotherapy: a film study

  • Mohammad Mohammadi (a1) (a2), Amir Taherkhani (a3) (a4) and Mohmmadsaeed Saboori (a5)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.