Skip to main content Accessibility help

Preliminary dosimetric evaluation of 90Y-BPAMD as a potential agent for bone marrow ablative therapy

  • Ali Rabiei (a1), Hassan Yousefnia (a2), Samaneh Zolghadri (a2) and Mojtaba Shamsaei (a1)



Bone-seeking radiopharmaceuticals are potential therapeutic tools for bone marrow ablation in patients with multiple myeloma. In this procedure, estimation of radiation absorbed dose received by the target and non-target organs is one of the most important parameters that should be undertaken. This research revolves around the absorbed dose to human organs after 90Y-BPAMD injection.

Materials and methods

90Y-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (90Y-BPAMD) complex was successfully prepared under optimised conditions. The human absorbed dose of the complex was estimated based on the biodistribution data on rats using the radiation-absorbed dose-assessment resource method. The target to non-target absorbed dose ratios for the complex was compared with the ratios for 166Ho-DOTMP, as the main radiopharmaceutical for bone marrow ablation.


As expected, the highest amounts of absorbed dose were observed in the bone surface and the bone marrow with 2·52 and 2·29 mGy/MBq, respectively. The red marrow to the most organ absorbed dose ratios for 90Y-BPAMD are much higher than the ratios for 166Ho-DOTMP.


90Y-BPAMD has interesting characteristics compared with 166Ho-DOTMP and can be considered as a high potential agent for bone marrow ablative therapy of the patient with multiple myeloma.


Corresponding author

Author for correspondence: Samaneh Zolghadri, E-mail:


Hide All

Cite this article: Rabiei A, Yousefnia H, Zolghadri S, Shamsaei M. (2019) Preliminary dosimetric evaluation of 90Y-BPAMD as a potential agent for bone marrow ablative therapy. Journal of Radiotherapy in Practice18: 70–74. doi: 10.1017/S146039691800047X



Hide All
1. Alexanian, R, Dimopoulos, M. The treatment of multiple myeloma. N Engl J Med 1994; 330: 484489.
2. Nishiyama, Y, Tateishi, U, Shizukuishi, K et al. Role of 18F-fluoride PET/CT in the assessment of multiple myeloma: initial experience. Ann Nucl Med 2013; 27: 7883.
3. Cascini, G L, Cuccurullo, V, Tamburrini, O et al. Nuclear medicine in multiple myeloma more than diagnosis. Nucl Med Rev Cent East Eur 2010; 13: 3238.
4. Cavo, M, Gobbi, M, Tura, S. Peptichemio in multiple myeloma. (Preliminary results). Haematologica 1981; 66: 208215.
6. Bayouth, J E, Macey, D J, Kasi, L P et al. Pharmacokinetics, dosimetry and toxicity of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma. J Nucl Med 1995; 36: 730737.
7. Breitz, H B, Wendt, R E, Stabin, M S et al. 166Ho-DOTMP radiation-absorbed dose estimation for skeletal targeted radiotherapy. J Nucl Med 2006; 47: 534542.
8. Wiesmann, A, Einsele, H, Kanz, L, Dohmen, B M. Complete remission after myeloablation with bone-seeking 186Re-HEDP and high-dose melphalan followed by autologous stem cell transplantation in a patient with chemorefractory multiple myeloma. Bone Marrow Transplant 2005; 36: 8990.
9. Rabie, A, Enayati, R, Yousefnia, H et al. Preparation, quality control and biodistribution assessment of 153Sm-BPAMD as a novel agent for bone pain palliation therapy. Ann Nucl Med 2015; 29: 870876.
10. Fellnera, M, Biesalski, B, Bausbacher, N et al. (68)Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl Med Biol 2012; 39: 993999.
11. Fellner, M, Baum, R P, Kubícek, V et al. PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur J Nucl Med Mol Imaging 2010; 37: 834.
12. Yousefnia, H, Zolghadri, S, Sadeghi, H R et al. Preparation and biological assessment of 177Lu-BPAMD as a high potential agent for bone pain palliation therapy: comparison with 177Lu-EDTMP. J Radioanal Nucl Chem 2016; 307: 12431251.
13. Macfarlane, D J, Durrant, S, Bartlett, M L et al. 153Sm EDTMP for bone marrow ablation prior to stem cell transplantation for haematological malignancies. Nucl Med Commun 2002; 23: 10991106.
14. Vanhemert, F J, Sloof, G W, Schimmel, K J M et al. Radiopharmaceutical management of 90Y/111In labeled antibodies: shielding and quantification during preparation and administration. Ann Nucl Med 2006; 20: 575581.
15. Horovitz, C T. Biochemistry of Scandium and Yttrium, Part 2: Biochemistry and Applications. New York: Springer, 2000.
16. Ogawa, K, Kawashima, H, Shiba, K et al. Development of [90Y]DOTA-conjugated bisphosphonate for treatment of painful bone metastases. Nucl Med Biol 2009; 36: 129135.
17. Környei, J, Antalffy, M, Baranyai, L. Opportunities in bone and joint therapy in the mirror of radiopharmaceuticals. Accessed on 31st August 2018.
18. Rabiei, A, Shamsaei, M, Yousefnia, H et al. Development and biological evaluation of 90Y-BPAMD as a novel bone seeking therapeutic agent. Radiochimica Acta 2016; 104: 727734.
19. Pandey, U, Dhami, P S, Jagesia, P et al. Extraction paper chromatography technique for the radionuclidic purity evaluation of 90Y for clinical use. Anal Chem 2008; 80: 801807.
20. Yousefnia, H, Zolghadri, S, Jalilian, A R, Naseri, Z. Preliminary absorbed dose evaluation of two novel 153Sm bone-seeking agents for radiotherapy of bone metastases: comparison with 153Sm-EDTMP. J Radiother Pract 2015; 14: 252259.
21. Sparks, R B, Aydogan, B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Sixth International Radiopharmaceutical Dosimetry Symposium. Oak Ridge, TN: Oak Ridge Associated Universities, 1996: 705716.
22. Stabin, M G, Siegel, J A. Physical models and dose factors for use in internal dose assessment. Health Phys 2003; 85: 294310.
23. Stabin, M G, Sparks, R B, Crowe, E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005; 46: 10231027.
24. Brenner, D J. Effective dose: a flawed concept that could and should be replaced. Br J Radiol 2008; 81: 521523.
25. ICRP Publication 103. The 2007 recommendations of the international commission on radiological protection. Ann ICRP 2007; 37: 24.
26. Bélanger, M J, Krause, S M, Ryan, C et al. Biodistribution and radiation dosimetry of [18F]F-PEB in nonhuman primates. Nucl Med Commun 2008; 29: 915919.
27. Kesner, A L, Hsueh, W A, Czernin, J et al. Radiation dose estimates for [18F]5-fluorouracil derived from PET-based and tissue-based methods in rats. Mol Imaging Biol 2008; 10: 341348.
28. Williams, LE. Radiopharmaceuticals: Introduction to Drug Evaluation and Dose Estimation. ISBN 9781439810675, Florida, USA: CRC Press, 2010.


Preliminary dosimetric evaluation of 90Y-BPAMD as a potential agent for bone marrow ablative therapy

  • Ali Rabiei (a1), Hassan Yousefnia (a2), Samaneh Zolghadri (a2) and Mojtaba Shamsaei (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed