Skip to main content Accessibility help
×
Home

Evaluation of a Belly Board immobilisation device for rectal cancer patients receiving pre-operative chemoradiation

  • Andrew Gaya (a1), Patryk Brulinski (a1), Stephen L. Morris (a1), Kim A. Ball (a2), Anthony G. Greener (a3), Sue Corcoran (a3), Anthony Henrys (a2), David B. Landau (a1), George Mikhaeel (a1), Martin D. Leslie (a1) and Anna Z. Winship (a1)...

Abstract

Purpose

To evaluate the efficacy of a Belly Board immobilisation device for rectal cancer patients.

Materials and methods

A randomised trial in patients receiving neo-adjuvant chemoradiation for rectal carcinoma was established. Patients were treated, prone with control arm, according to standard departmental protocol and experimental arm with the use of a Belly Board. All treatments were planned using a three-field technique. The primary endpoints were reproducibility and irradiated small bowel volume. Questionnaires were used to assess secondary endpoints of patient comfort, ease of set-up and acute toxicities.

Results

Pre-planned interim analysis was performed after recruiting 30 patients. In all, 348 portal images were analysed retrospectively. Around 8 out of 12 parameters measuring set-up reproducibility were in favour of the Belly Board arm. Random error in the anterior–posterior direction was improved and statistically significant in the experimental arm (95% CI; p≤0·05). Small bowel V15 was significantly lower in the Belly Board position (mean V15=14·5%) compared with the standard position (mean V15=21·4%), paired t-test 95% CI; p=0·035. Also, patients’ comfort satisfaction was greater in the Belly Board arm.

Conclusions

Set-up reproducibility, small bowel V15, patient comfort and satisfaction were all significantly improved by the use of the Belly Board.

Copyright

Corresponding author

Correspondence to: Dr Andrew Gaya, Department of Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK. Tel: +44 (0) 20 7188 1459. Fax: +44 (0) 20 7009 4272. E-mail: andrew.gaya@gstt.nhs.uk

References

Hide All
1. Krook, J E, Moertel, C G, Gunderson, L L et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med 1991; 324: 709715.
2. MacFarlane, J K, Ryall, R D H, Heald, R J. Mesorectal excision for rectal cancer. Lancet 1993; 341: 457460.
3. Gallagher, M J, Brereton, H D, Rostock, R A et al. A prospective study of treatment techniques to minimize the volume of pelvic small bowel with reduction of acute and late effects associated with pelvic radiation. Int J Radiat Oncol Biol Phys 1986; 12: 15651573.
4. Baglan, K L, Frazier, R C, Yan, D, Huang, R R, Martinez, A A, Robertson, J M. The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys 2002; 52: 176183.
5. Emami, B, Lyman, J, Brown, A et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991; 21: 109122.
6. Cole, H. Displacement of small bowel from pelvic radiation field. Lancet 1988; 2: 13411342.
7. Gunderson, L L, Russell, A H, Llewellyn, H J, Doppke, K P, Tepper, J E. Treatment planning for colorectal cancer: radiation and surgical techniques and value of small-bowel films. Int J Radiat Oncol Biol Phys 1985; 11: 13791393.
8. Das, I J, Lanciano, R M, Movsas, B, Kagawa, K, Barnes, S J. Efficacy of a belly board device with CT-simulation in reducing small bowel volume within pelvic irradiation fields. Int J Radiat Oncol Biol Phys 1997; 39: 6776.
9. Shanahan, T G, Mehta, M P, Bertelrud, K L et al. Minimization of small bowel volume within treatment fields utilizing customized ‘belly boards’. Int J Radiat Oncol Biol Phys 1990; 19: 469476.
10. Huh, S J, Lim, D H, Ahn, Y C et al. Effect of customized small bowel displacement system in pelvic irradiation. Int J Radiat Oncol Biol Phys 1998; 40: 623627.
11. Rudat, V, Flentje, M, Engenhart, R, Metzger, M, Wannenmacher, M. The belly-board technic for the sparing of the small intestine. Studies on positioning accuracy taking into consideration conformational irradiation technics. Strahlenther Onkol 1995; 171: 437443.
12. Olofsen-van Acht, M J, Quint, S, Seven, M et al. Three-dimensional treatment planning for postoperative radiotherapy in patients with node-positive cervical cancer. Comparison between a conventional and a conformal technique. Strahlenther Onkol 1999; 175: 462469.
13. Portelance, L, Chao, K S, Grigsby, P W, Bennet, H, Low, D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 2001; 51: 261266.
14. Nijkamp, J, Doodeman, B, Marijnen, C, Vincent, A, van Vliet-Vroegindeweij, C. Bowel exposure in rectal cancer IMRT using prone, supine, or a belly board. Radiother Oncol 2012; 102: 2229.
15. Wiesendanger-Wittmer, E M, Sijtsema, N M, Muijs, C T, Beukema, J C. Systematic review of the role of a belly board device in radiotherapy delivery in patients with pelvic malignancies. Radiother Oncol 2012; 102 (3): 325334.
16. Bidmead, M, Coffey, M, Crellin, A et al. Geometric Uncertainties in Radiotherapy: Defining the Target Volume. London, UK: British Institute of Radiology, 2003.
17. Morgan, S, Greener, A G. ImageTrack: A Software Tool for Analyzing and Refining Treatment Verification. Programme Abstract from ‘IMRT—A Clinical Service for the 21st Century’ Meeting. Manchester, UK: Institute of Physics in Engineering and Medicine, 2005.
18. Greener, A G. Practical Determination of Systematic and Random Set-Up Errors Using Portal Imaging. Geometric Uncertainties in Radiotherapy: Appendix 2c. London, UK: British Institute of Radiology, 2003.
19. Trotti, A, Colevas, A D, Setser, A et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 2003; 13: 176181.
20. Altman, D G. Statistics and ethics in medical research: III. How large a sample? Br Med J 1980; 281: 13361338.
21. Lee, S H, Kim, T H, Kim, D Y et al. The effect of belly board location in rectal cancer patients treated with preoperative radiotherapy. Clin Oncol (R Coll Radiol) 2006; 18: 441446.
22. Kim, T H, Chie, E K, Kim, D Y et al. Comparison of the belly board device method and the distended bladder method for reducing irradiated small bowel volumes in preoperative radiotherapy of rectal cancer patients. Int J Radiat Oncol Biol Phys 2005; 62: 769775.
23. Ghosh, K, Padilla, L A, Murray, K P, Downs, L S, Carson, L F, Dusenbery, K E. Using a belly board device to reduce the small bowel volume within pelvic radiation fields in women with postoperatively treated cervical carcinoma. Gynecol Oncol 2001; 83: 271275.
24. Martin, J, Fitzpatrick, K, Horan, G et al. Treatment with a belly-board device significantly reduces the volume of small bowel irradiated and results in low acute toxicity in adjuvant radiotherapy for gynecologic cancer: results of a prospective study. Radiother Oncol 2005; 74: 267274.

Keywords

Type Description Title
WORD
Supplementary materials

Gaya Supplementary Material
Supplementary Material

 Word (118 KB)
118 KB
PDF
Supplementary materials

Gaya Supplementary Material
Supplementary Material

 PDF (151 KB)
151 KB

Evaluation of a Belly Board immobilisation device for rectal cancer patients receiving pre-operative chemoradiation

  • Andrew Gaya (a1), Patryk Brulinski (a1), Stephen L. Morris (a1), Kim A. Ball (a2), Anthony G. Greener (a3), Sue Corcoran (a3), Anthony Henrys (a2), David B. Landau (a1), George Mikhaeel (a1), Martin D. Leslie (a1) and Anna Z. Winship (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed