Skip to main content Accessibility help
×
Home

Determination of geometrical margins in external beam radiotherapy for prostate cancer

  • Mohamed Bencheikh (a1), Abdelmajid Maghnouj (a1), Jaouad Tajmouati (a1), Ahmed Dadouch (a1) and Zakariae Benjelloun (a1)...
  • Please note a correction has been issued for this article.

Abstract

Introduction

The focus of this study is to find the optimal clinical tumour volume (CTV) to planning tumour volume (PTV) margins for precise radiotherapy treatment of prostate cancer. The geometrical shape of the target volume posses challenges in accurately identifying the CTV to PTV margins, especially when the organ affected by cancer demonstrates anatomical variations and the surrounding organs have high radio-sensitivity, in comparison to the organ of origin of the cancer.

Materials and methods

The geometrical margins of CTV to PTV are investigated using portal imaging, in three directions. This study is carried out on 20 patients treated by the external photon beam radiotherapy of prostate cancer using standard accelerator without stereotaxic and without prostate markers.

Results and discussion

Based on previous studies and the findings of our work, we propose CTV to PTV margin of 5·84 mm in the lateral direction, of 5·1 mm in the cranio-spinal direction and of 7·3 mm in the antero-posterior direction for external photon beam radiotherapy of prostate cancer.

Conclusion

The proposed CTV to PTV margins ensure high radiotherapy treatment precision of prostate cancer.

Copyright

Corresponding author

Author for correspondence: Mohamed Bencheikh, Physics Department, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, 30000, Morocco. E-mail: bc.mohamed@gmail.com

Footnotes

Hide All

Cite this article: Bencheikh M, Maghnouj A, Tajmouati J, Dadouch A, Benjelloun Z. (2019) Determination of geometrical margins in external beam radiotherapy for prostate cancer. Journal of Radiotherapy in Practice18: 186–189. doi: 10.1017/S1460396918000699

Footnotes

References

Hide All
1. Report 50, Prescribing, recording and reporting photon beam therapy. Bethesda, MD: ICRU, 1993.
2. Report 62: Supplement to ICRU report 50 prescribing, recording and reporting photon beam therapy. Bethesda, MD: ICRU, 1999.
3. Report No 58: Dose and volume specification for reporting interstitial therapy. Bethesda, MD: ICRU, 1998.
4. Gokhan, K, Rao, G, Warren, D et al. A Supervised Learning Tool for Prostate Cancer Foci Detection and Aggressiveness Identification using Multiparametric magnetic resonance imaging/magnetic resonance spectroscopy imaging. Concer Inform 2018; 17: 18.
5. American Cancer Society. Cancer Facts & Figures. Atlanta, GA: American Cancer Society, 2017.
6. Kihlén, B, Ruden, B L. Reproducibility of field alignment in radiation therapy. A large scale clinical experience. Acta Oncol 1989; 28: 689692.
7. Ramiandrisoa, F, Duvergé, L, Castellib, J, Nguyena, T D, Servagi-Vernat, S, De Crevoisier, R. Clinical to planning target volume margins in prostate cancer radiotherapy. Cancer Radiother 2016; 20 (6–7): 629639.
8. Richards, M J S, Buchler, D A. Errors in reproducing pelvic radiation portals. Int J Radiat Oncol Biol Phys 1977; 2: 10171019.
9. IAEA-TECDOC-1540. Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. Vienna: International Atomic Energy Agency, 2007.
10. Technical Reports Series No. 430. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. Vienna: International Atomic Energy Agency, 2004.
11. IAEA TRS-398. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. Vienna, Austria: International Atomic Energy Agency, 2004.
12. Klein, E E, Hanley, J, Bayouth, J et al. AAPM Task Group 142 Report: quality assurance of medical accelerators. Med Phys 2009; 36: 41974212.
13. Aubry, J F, Beaulieu, L, Girouard, L M et al. Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 2004; 60: 3039.
14. De Boer, H C J, Van Os, M J H, Jansen, P P, Heijmen, B J M. Application of the NoAction Level (NAL) protocol to correct for prostate motion based on electronicportal imaging of implanted markers. Int J Radiat Oncol Biol Phys 2005; 61: 969983.
15. Gordon, J J, Siebers, J V. Evaluation of dosimetric margins in prostate IMRT treatment plans. Med Phys 2008; 35 (2): 569575.
16. Bel, A, Van Herk, M, Bartelink, H, Lebesque, J V. A verification procedure to improve patient set-up accuracy using portal images. Radiother Oncol 1993; 29: 253260.
17. Wang, K K-H, Vapiwala, N, Bui, V et al. The impact of stool and gas volume on intrafraction prostate motion in patients undergoing radiotherapy with daily endorectal balloon. Radiother Oncol 2014; 112: 8994.
18. Huijun, Xu, Gordon, J J, Siebers, J V. Coverage-based treatment planning to accommodate delineation uncertainties in prostate cancer treatment. Med Phys. 2015; 42 (9): 54355443.
19. Jin, S L, Mu-Han, L, Mark, K B, Eric, M H, Chang-Ming, M. Reduction of prostate intrafractional motion from shortening the treatment time. Phys Med Biol 2013; 58 (14): 49214932.
20. Buettner, F, Gulliford, S L, Webb, S, Partridge, M. Using Bayesian logistic regression to evaluate a new type of dosimetric constraint for prostate radiotherapy treatment planning. Med Phys 2010; 37 (4): 17681777.
21. Rudat, V, Nour, A, Hammoud, M, Alaradi, A, Mohammed, A. Image-guided intensity-modulated radiotherapy of prostate cancer: analysis of interfrac-tional errors and acute toxicity. Strahlenther Onkol 2016; 192: 109117.
22. Schallenkamp, J M, Herman, M G, Kruse, J J, Pisansky, T M. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. Int J Radiat Oncol Biol Phys 2005; 63: 800811.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: