Skip to main content Accessibility help
×
Home

Quality assurance of linear accelerator: a comprehensive system using electronic portal imaging device

Published online by Cambridge University Press:  22 October 2018


P. Niyas
Affiliation:
Department of Physics, Farook College, Kerala, India Department of Medical Physics, Baby Memorial Hospital, Kerala, India Department of Medical Physics, MVR Cancer Centre & Research Institute, Kerala, India
K. K. Abdullah
Affiliation:
Department of Physics, Farook College, Kerala, India
M. P. Noufal
Affiliation:
Department of Medical Physics, Baby Memorial Hospital, Kerala, India
R. Vysakh
Affiliation:
Department of Medical Physics, MVR Cancer Centre & Research Institute, Kerala, India
Corresponding
E-mail address:

Abstract

Aim

The Electronic Portal Imaging Device (EPID), primarily used for patient setup during radiotherapy sessions is also used for dosimetric measurements. In the present study, the feasibility of EPID in both machine and patient-specific quality assurance (QA) are investigated. We have developed a comprehensive software tool for effective utilisation of EPID in our institutional QA protocol.

Materials and methods

Portal Vision aS1000, amorphous silicon portal detector attached to Clinac iX—Linear Accelerator (LINAC) was used to measure daily profile and output constancy, various Multi-Leaf Collimator (MLC) checks and patient plan verification. Different QA plans were generated with the help of Eclipse Treatment Planning System (TPS) and MLC shaper software. The indigenously developed MATLAB programs were used for image analysis. Flatness, symmetry, output constancy, Field Width at Half Maximum (FWHM) and fluence comparison were studied from images obtained from TPS and EPID dosimetry.

Results

The 3 years institutional data of profile constancy and patient-specific QA measured using EPID were found within the acceptable limits. The daily output of photon beam correlated with the output obtained through solid phantom measurements. The Pearson correlation coefficients are 0.941 (p = 0.0001), 0.888 (p = 0.0188) and 0.917 (p = 0.0007) for the years of 2014, 2015 and 2016, respectively. The accuracy of MLC for shaping complex treatment fields was studied in terms of FWHM at different portions of various fields, showed good agreement between TPS-generated and EPID-measured MLC positions. The comparison of selected patient plans in EPID with an independent 2D array detector system showed statistically significant correlation between these two systems. Percentage difference between TPS computed and EPID measured fluence maps calculated for number of patients using MATLAB code also exhibited the validity of those plans for treatment.


Type
Original Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Cite this article: Niyas P, Abdullah KK, Noufal MP, Vysakh R. (2019) Quality assurance of linear accelerator: a comprehensive system using electronic portal imaging device. Journal of Radiotherapy in Practice18: 138–149. doi: 10.1017/S146039691800050X


References

1. Kutcher, GJ, Coia, L, Gillin, M et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys 1994; 21 (4): 581618.CrossRefGoogle ScholarPubMed
2. Klein, EE, Hanley, J, Bayouth, J et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys 2009; 36 (9): 41974212.CrossRefGoogle ScholarPubMed
3. Fraass, B, Doppke, K, Hunt, M et al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 1998; 25: 17731829.CrossRefGoogle Scholar
4. McKenzie, EM, Balter, PA, Stingo, FC, Jones, J, Followill, DS, Kry, SF. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans. Med Phys. 2014; 41 (12): 121702.CrossRefGoogle ScholarPubMed
5. Pasma, KL, Dirkx, ML. P, Kroonwijk, M, Visser, AG, Heijmen, BJM. Dosimetric verification of intensity modulated beams produced with dynamic multileaf collimation using an electronic portal imaging device. Med Phys 1999; 26: 23732378.CrossRefGoogle ScholarPubMed
6. Talamonti, C, Casati, M, Bucciolini, M. Pretreatment verification of IMRT absolute dose distributions using a commercial a Si-EPID. Med Phys 2006; 33: 43674378.CrossRefGoogle ScholarPubMed
7. Lee, C, Menk, F, Cadman, P, Greer, PB. A simple approach to using an amorphous silicon EPID to verify IMRT planar dose maps. Med Phys 2009; 36: 984992.CrossRefGoogle ScholarPubMed
8. Esch, AV, Huyskens, DP, Hirschi, L, Scheib, S, Baltes, C. Optimized Varian a Si portal dosimetry: development of datasets for collective use. J Appl Clin Med Phys 2013; 14: 8299.CrossRefGoogle Scholar
9. Vieira, SC, Bolt, RA, Dirkx, MLP, Visser, AG, Heijmen, BJM. Fast, daily linac verification for segmented IMRT using electronic portal imaging. Radiother Oncol 2006; 80 (1): 8692.CrossRefGoogle ScholarPubMed
10. Yang, Y, Xing, L. Quantitative measurement of MLC leaf displacements using an electronic portal image device. Phys Med Biol 2004; 49: 15211533.CrossRefGoogle ScholarPubMed
11. Parent, L, Seco, J, Evans, PM, Dance, DR, Fielding, A. Evaluation of two methods of predicting MLC leaf positions using EPID measurements. Med Phys 2006; 33: 31743182.CrossRefGoogle ScholarPubMed
12. Chang, J, Obcemea, CH, Sillanpaa, J, Mechalakos, J, Burman, C. Use of EPID for leaf position accuracy QA of dynamic multi-leaf collimator (DMLC) treatment. Med Phys 2004; 31: 20912096.CrossRefGoogle ScholarPubMed
13. Van Elmpt, W, McDermott, L, Nijsten, S, Wendling, M, Lambin, P, Mijnheer, B. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 2008; 88: 289309.CrossRefGoogle ScholarPubMed
14. Hossain, M, Rhoades, J. On beam quality and flatness of radiotherapy megavoltage photon beams. Austral Phys Eng Sci Med 2016; 39 (1): 135145.CrossRefGoogle ScholarPubMed
15. Nath, R, Biggs, PJ, Bova, FJ, Ling, CC, Purdy, JA, van de Geijn, J et al. AAPM code of practice for radiotherapy accelerators: report of AAPM Radiation Therapy Task Group No. 45. Med Phys 1994; 21: 10931121.CrossRefGoogle ScholarPubMed
16. Rangel, A, Dunscombe, P. Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC. Med Phys 2009; 36: 33043309.CrossRefGoogle ScholarPubMed
17. Mamalui-Hunter, M, Li, H, Low, DA. MLC quality assurance using EPID: a fitting technique with sub pixel precision. Med Phys 2008; 35: 23472355.CrossRefGoogle Scholar
18. Anup Kumar, B, Suresh Chander, S, Bhupendra, R, Arvind, S. Study of 2D ion chamber array for angular response and QA of dynamic MLC and pretreatment IMRT plans. Pract Oncol Radiother 2009; 14 (3): 8994.Google Scholar
19. Niyas, P, Abdullah, KK, Noufal, MP et al. Effect of fluence smoothing on the quality of intensity-modulated radiation treatment plans. Radiol Phys Technol 2016; 9: 202.CrossRefGoogle ScholarPubMed
20. Nelms, BE, Simon, JA. A survey on IMRT QA analysis. J App Clin Med Phys 2007; 8 (3): 7690.CrossRefGoogle ScholarPubMed
21. Bucciolini, M, Bounamici, FB, Casati, M. Verification of IMRT fields by film dosimetry. Med Phys 2004; 31 (1): 161168.CrossRefGoogle ScholarPubMed
22. Ju, SG, Ahn, YC, Huh, SJ, Yeo, IJ. Film dosimetry for intensity modulated radiotherapy: dosimetric evaluation. Med Phys 2002; 29 (3): 315325.CrossRefGoogle ScholarPubMed
23. Tyler, M, Vial, P, Metcalfe, P, Downes, S. Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital. J Phys Conf Ser 2013; 444 (012043): 14.CrossRefGoogle Scholar
24. Heilemann, G, Poppe, B, Laub, W. On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance. Med Phys 2013; 40 (3): 031702.CrossRefGoogle ScholarPubMed
25. Saminathan, S, Manickan, R, Chandraraj, V, Supe, SS. Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification. J Appl Clin Med Phys 2010; 11: 116127.CrossRefGoogle ScholarPubMed
26. Bailey, DW, Kumaraswamy, L, Bakhtiari, M, Malhotra, HK, Podgorsak, MB. EPID dosimetry for pretreatment quality assurance with two commercial systems. J Appl Clin Med Phys 2012; 13 (4): 8299.CrossRefGoogle ScholarPubMed
27. McDermott, LN, Wendling, M, Sonke, JJ, van Herk, M, Mijnheer, BJ. Replacing pretreatment verification with in-vivo EPID dosimetry for prostate IMRT. Int J Radiat Oncol Biol Phys 2007; 67 (5): 15681577.CrossRefGoogle ScholarPubMed
28. Mans, A, Wendling, M, McDermott, LN et al. Catching errors with in vivo EPID dosimetry. Med Phys 2010; 37 (6): 26382644.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 9
Total number of PDF views: 61 *
View data table for this chart

* Views captured on Cambridge Core between 22nd October 2018 - 26th November 2020. This data will be updated every 24 hours.

Hostname: page-component-57c975d4c7-69ptw Total loading time: 0.557 Render date: 2020-11-26T02:14:40.614Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Nov 26 2020 02:05:52 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": false, "relatedCommentaries": false, "subject": true, "clr": false, "languageSwitch": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quality assurance of linear accelerator: a comprehensive system using electronic portal imaging device
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quality assurance of linear accelerator: a comprehensive system using electronic portal imaging device
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quality assurance of linear accelerator: a comprehensive system using electronic portal imaging device
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *